

Building Cocoa Applications: A Step-by-Step Guide

By Simson Garfinkel, Michael Mahoney

Publisher: O'Reilly

Pub Date: May 2002

ISBN: 0-596-00235-1

Pages: 648

 Copyright

 Dedication

 Preface

 Cocoa and Mac OS X

 Organization of This Book

 What You Will Need

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Part I: Cocoa Overview

 Chapter 1. Understanding theAqua Interface

 Section 1.1. What Makes Mac OS X So Special?

 Section 1.2. A Quick Look at the Mac OS X User Interface

 Section 1.3. Basic Principles of the Aqua Interface

 Section 1.4. The Mouse and Cursor

 Section 1.5. Window Types and Behavior

 Section 1.6. Menus and the Menu Bar

 Section 1.7. The Dock

 Section 1.8. Controls

 Section 1.9. The Finder

 Section 1.10. Configuring Your Desktop, Step by Step

 Section 1.11. Menu Guidelines and Keyboard Equivalents

 Section 1.12. Working with the Filesystem,Step by Step

 Section 1.13. Summary

 Section 1.14. Exercises

 Section 1.15. References

 Chapter 2. Tools for Developing Cocoa Applications

 Section 2.1. Developer Tools

 Section 2.2. Utilities

 Section 2.3. Working with the Terminal

 Section 2.4. Debugging Programs with gdb

http://www.oreillynet.com/cs/catalog/view/au/355?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/851?x-t=book.view

 Section 2.5. User Interface Design

 Section 2.6. Summary

 Section 2.7. Exercises

 Chapter 3. Creating a Simple Application with Interface Builder

 Section 3.1. Getting Started with Interface Builder

 Section 3.2. Adding Objects to Your Application

 Section 3.3. Objects, Messages, and Targets

 Section 3.4. Summary

 Section 3.5. Exercise

 Chapter 4. An Objective-C ApplicationWithout Interface Builder

 Section 4.1. The Tiny.m Program

 Section 4.2. An Introduction to Objective-C

 Section 4.3. Tiny.m Revisited

 Section 4.4. Summary

 Section 4.5. Exercises

 Section 4.6. References

 Part II: Calculator: Building a Simple Application

 Chapter 5. Building a Project: A Four-Function Calculator

 Section 5.1. Getting Started: Building the Calculator Project

 Section 5.2. Building the Calculator's User Interface

 Section 5.3. Building the Calculator's Controller Class

 Section 5.4. Customizing Buttons and Making Connections

 Section 5.5. Compiling and Running a Program

 Section 5.6. Compiler Error Messages

 Section 5.7. The enterDigit: Action Method

 Section 5.8. Adding the Four Calculator Functions

 Section 5.9. Adding the Unary Minus Function to the Controller Class

 Section 5.10. The Files in a Project

 Section 5.11. Summary

 Section 5.12. Exercises

 Chapter 6. Nibs and Icons

 Section 6.1. Customizing MainMenu.nib

 Section 6.2. Managing Multiple Nibs

 Section 6.3. Adding Icons to Applications

 Section 6.4. Changing Calculator's Application Icon

 Section 6.5. Cocoa's NSImage Class

 Section 6.6. Summary

 Section 6.7. Exercises

 Section 6.8. References

 Chapter 7. Delegation and Resizing

 Section 7.1. Handling Different Bases

 Section 7.2. Delegation

 Section 7.3. Disabling Buttons for BetterMultiradix Input

 Section 7.4. Resizing Windows Programmatically

 Section 7.5. Two Very Important Classes: NSWindow and NSView

 Section 7.6. Summary

 Section 7.7. Exercises

 Chapter 8. Events and Responders

 Section 8.1. Events and the NSResponder Chain

 Section 8.2. Events and the NSApplication Object

 Section 8.3. The Event Loop

 Section 8.4. Catching Keyboard Eventsfor Our Calculator

 Section 8.5. Summary

 Section 8.6. Exercises

 Section 8.7. References

 Chapter 9. Darwin and the Window Server

 Section 9.1. Unix, Mach, and the Mac OS X Environment

 Section 9.2. The Window Server and Quartz

 Section 9.3. Seeing All the Processes

 Section 9.4. Summary

 Section 9.5. Exercises

 Section 9.6. References

 Part III: MathPaper: A Multiple-Document, Multiprocess Application

 Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

 Section 10.1. The MathPaper Application

 Section 10.2. The Evaluator Back End

 Section 10.3. Cocoa's Document-Based Architecture

 Section 10.4. Building MathPaper's Front End

 Section 10.5. Summary

 Section 10.6. Exercises

 Section 10.7. References

 Chapter 11. Tasks, Pipes, and NSTextView

 Section 11.1. Processes, Pipes, and Resources

 Section 11.2. Making Evaluator a MathPaper Auxiliary Executable

 Section 11.3. MathDocument Class Modifications

 Section 11.4. Creating PaperController, a Subclass of NSWindowController

 Section 11.5. The NSScrollView and NSTextView Classes

 Section 11.6. PaperController Class Modifications

 Section 11.7. Summary

 Section 11.8. Exercises

 Chapter 12. Rich Text Format and NSText

 Section 12.1. Rich Text Format

 Section 12.2. Creating an RTF Class

 Section 12.3. Integrating Our RTF Class into MathPaper

 Section 12.4. Summary

 Section 12.5. Exercises

 Chapter 13. Saving, Loading, and Printing

 Section 13.1. Data Management with NSDocument

 Section 13.2. Saving to a File

 Section 13.3. Loading from a File

 Section 13.4. Marking a Document Window as Edited

 Section 13.5. Adding Printing Capability

 Section 13.6. Summary

 Section 13.7. Exercises

 Chapter 14. Drawing with Quartz

 Section 14.1. Animation in an About Panel

 Section 14.2. The Quartz Window Server

 Section 14.3. Implementing the About Panel in MathPaper

 Section 14.4. Quartz Graphics Data Types

 Section 14.5. Timers

 Section 14.6. Putting It All Together

 Section 14.7. Summary

 Section 14.8. Exercises

 Section 14.9. References

 Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

 Section 15.1. The Advantages of NSView's drawRect: Method

 Section 15.2. BlackView: An NSView That Paints Itself Black

 Section 15.3. A Closer Look at the NSView Class

 Section 15.4. BarView: An NSView with a Scaled Coordinate System

 Section 15.5. PolygonView: A Non-Opaque NSView

 Section 15.6. Responding to Events in an NSView

 Section 15.7. Autosizing Multiple Views in a Window

 Section 15.8. Summary

 Section 15.9. Exercises

 Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

 Chapter 16. GraphPaper: A Multithreaded Application with a Display List

 Section 16.1. GraphPaper's Design

 Section 16.2. Working with Multiple Threads

 Section 16.3. Building the GraphPaper Application

 Section 16.4. Extending the Display List

 Section 16.5. Summary

 Section 16.6. Exercises

 Section 16.7. References

 Chapter 17. Color

 Section 17.1. Colors and Color Objects

 Section 17.2. Adding Color to GraphPaper

 Section 17.3. Summary

 Section 17.4. Exercises

 Chapter 18. Tracking the Mouse

 Section 18.1. Tracking the Mouse

 Section 18.2. Adding Mouse Tracking to GraphPaper

 Section 18.3. Summary

 Section 18.4. Exercises

 Section 18.5. References

 Chapter 19. Zooming and Saving Graphics Files

 Section 19.1. Adding a Zoom Button to GraphPaper

 Section 19.2. Saving to PDF

 Section 19.3. Saving to TIFF

 Section 19.4. Creating an Accessory NSView

 Section 19.5. Summary

 Section 19.6. Exercises

 Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

 Section 20.1. Cut, Copy, and Paste with the Pasteboard

 Section 20.2. Using the Pasteboard in GraphPaper

 Section 20.3. Services

 Section 20.4. Creating Your Own Service

 Section 20.5. Drag-and-Drop

 Section 20.6. Summary

 Section 20.7. Exercises

 Chapter 21. Preferences and Defaults

 Section 21.1. Preferences and the Defaults Database System

 Section 21.2. Adding Defaults to GraphPaper

 Section 21.3. Making the Preferences Panel Work with Defaults

 Section 21.4. Setting Up a Multi-View Panel

 Section 21.5. Summary

 Section 21.6. Exercises

 Appendix A. Cocoa Resources

 Section A.1. Apple Resources

 Section A.2. Third-Party Resources

 Colophon

Book: Building Cocoa Applications: A Step-by-Step Guide

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (http://safari.oreilly.
com). For more information contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between
the image of a Mastiff and building Cocoa applications is a trademark of O'Reilly &
Associates, Inc.

Apple Computer, Inc. boldly combined open source technologies with its own
programming efforts to create Mac OS X, one of the most versatile and stable operating
systems now available. In the same spirit, Apple has joined forces with O'Reilly &
Associates, Inc. to bring you an indispensable collection of technical publications. The
ADC logo indicates that the book has been technically reviewed by Apple engineers and is
recommended by the Apple Developer Connection.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Cocoa, Finder, Mac,
Macintosh, MPW, QuickDraw, QuickTime, and Sherlock are trademarks of Apple
Computer, Inc., registered in the United States and other countries. Aqua, Carbon, and
Quartz are trademarks of Apple Computer, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the author assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

http://safari.oreilly.com/
http://safari.oreilly.com/
mailto:corporate@oreilly.com

Book: Building Cocoa Applications: A Step-by-Step Guide

Dedication

For the kids: Nina, Timmy, Sonia, Jared, and Draken

Book: Building Cocoa Applications: A Step-by-Step Guide

Preface

Welcome!

Building Cocoa Applications describes how to write Objective-C programs for computers
running the Mac OS X operating system, using the object-oriented Cocoa application
framework. The book covers a wide range of technologies:

● The Aqua graphical user interface, Cocoa developer tools, object-oriented concepts,
and the Objective-C language

● Cocoa programming and graphics concepts: nibs, icons, delegation, resizing,
events, responders, tasks, pipes, color, Rich Text, the mouse, zoom buttons,
pasteboards, modal sessions, and drag-and-drop

● The Cocoa environment: Darwin and the Window Server, the document-based
architecture, the Quartz drawing system, Cocoa's preferences and defaults systems,
and facilities for saving, loading, and printing

Building Cocoa Applications is a no-nonsense, hands-on book that's intended for serious
developers. It's filled with extended examples illustrating complete applications written in
Objective-C. As you proceed through the book, you'll take a step-by-step approach to
building a series of applications of increasing complexity, adding features as you go.

Although we do not assume prior knowledge of the Macintosh or any other window-based
operating environment, we do assume some familiarity with programming in general and
the ANSI C language in particular.

Our primary goal is to get you up and running as quickly as possible. If you carefully read
this book from cover to cover and diligently build the sample applications along with us,
we're confident that you'll soon be writing your own sophisticated Cocoa graphics
applications.

While this book is fast moving, we start by laying a solid foundation. Part I of the book
explains how to use Aqua, the Mac OS X graphical user interface (GUI), and describes the
Cocoa developer tools you'll use to build applications. It also introduces two simple but
complete Cocoa applications - one built with Cocoa's Interface Builder tool and one built
without it. Parts II, III, and IV are organized by application: we'll build three major, highly
useful graphics applications and, in doing so, teach you how to build your own applications
with Cocoa. The applications we will build are:

Calculator (Part II)

A simple, four-function calculation application that's similar to the calculator that
comes with Mac OS X

MathPaper (Part III)

An application that is similar to a word processor but that solves equations you
supply

GraphPaper (Part IV)

A more complex, multithreading application that graphs a formula in two
dimensions

The first chapter in each of these three parts introduces the application and builds its most
basic functionality. Each subsequent chapter adds a new layer of functionality. For
example, Chapter 6 shows how to add an icon to the Calculator application so it will
display nicely in the Finder, Chapter 12 enhances MathPaper so it displays Rich Text, and
Chapter 19 adds zoom buttons to GraphPaper.

We'll also build numerous additional simple applications throughout the book to
demonstrate specific features of Cocoa and Mac OS X. You can build all of these
applications right along with us - we provide simple but complete instructions on how to do
whatever is necessary. Code for all of the applications we'll build is provided on the
O'Reilly web site (see Section P.5, later in this Preface).

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

Cocoa and Mac OS X

Cocoa is an object-oriented development environment that runs in the Mac OS X
environment. Cocoa software has previously been bundled with the Mac OS X user system
on a separate developer CD-ROM, but newer systems come with a package that users can
install - the package name is Developer.mpkg, and it's found in /Applications/
Installers/Developer Tools. Although there are many ways to write programs
for Mac OS X, we think you'll find Cocoa is both the easiest and the most powerful.

Mac OS X and Cocoa Components

From the user's point of view, Mac OS X is a unified operating system and graphical
operating environment that makes computers easy to use. It includes:

Aqua

Apple's revolutionary GUI, which is both visually pleasing and very easy to use.

Quartz

A comprehensive two-dimensional drawing system that can be used to display text
and graphics on a computer screen or on a printer and to create Adobe Portable
Document Format (PDF) files.

The Finder

A graphical interface to the computer's filesystem and to running applications.

Mail, TextEdit, Terminal, Console

Some of the Apple-supplied applications included in Mac OS X.

Foundation

An underlying set of operating-system services that are provided to Carbon, Cocoa,
and Java programs.

System Preferences and the defaults system

Enable users to store their preferences for individual programs without having to

directly modify special files stored in their home directories.

The HFS+ filesystem and UFS filesystem

Organize the way that files and folders are stored on the computer's disks.

TCP/IP networking

Allows Macintosh computers to communicate with each other and with the
Internet.

Darwin

The underlying Unix operating system on which Mac OS X is based.

Figure P-1 shows the relationship between these technologies in the Mac OS X operating
system.

Figure P-1. The Mac OS X architecture

The Mac OS X operating system can run programs with many different kinds of user
interfaces, including:

● Programs written with the Cocoa development environment. These programs
display natively with the Aqua user interface.

● Programs that use a restricted part of the Mac OS 9 interface called Carbon. These
programs also display with the Aqua user interface.

● Programs written in the Java programming language. Java programs can use either
the Cocoa or Swing application frameworks.

● Programs written for the Mac OS 7, 8, and 9 operating systems. These programs
are run in the Mac OS X "Classic" environment and appear as they would on a
Macintosh computer running Mac OS 9.

● Programs written for the underlying Unix operating system. These programs either
do not display a user interface at all, or implement a character-based interface from

the Unix command line.

This book focuses on the Cocoa development environment, but we will mention the other
user interfaces as necessary. From the programmer's point of view, Cocoa includes two
distinct frameworks:

Foundation

A collection of Objective-C classes for managing memory, interfacing with the
computer's operating system, and performing other functions that are independent
of the GUI.

Application Kit (AppKit)

A collection of Objective-C classes that give Cocoa its distinctive look and feel.

By using Cocoa, your programs automatically get the Aqua look and feel. Although every
application is different, Cocoa makes it easier for all applications to work in similar ways,
which in turn makes it easier for people to learn new applications.

Cocoa also makes it easier for applications to work with each other. Because of Cocoa's
object-oriented nature, Cocoa applications can easily provide services and special functions
to other applications running on the same computer or across the network.

Using Cocoa speeds your development time. Programmers with just a few months of
experience with Cocoa report that they can develop a Cocoa application 3 to 10 times faster
using the Foundation and Application Kit than they can using other application frameworks
such as PowerPlant, Qt, or Microsoft's Foundation Classes. For many corporations, this
improved productivity justifies the decision to deploy Macintosh computer systems.

Object-Oriented Programming

Writing programs for Cocoa is similar to, and yet significantly different from, writing
programs for other environments. As with other modern application development
environments, you write Cocoa programs by building systems of related but distinct parts,
or objects, and connecting them together to form an integrated whole. Confining different
aspects of a program to different pieces makes those pieces easier to design, implement,
debug, and reuse. This is what is known as object-oriented programming (OOP).

Unlike development systems based on the C++ programming language (such as Microsoft's
Foundation Classes and Code Warrior's PowerPlant), however, Cocoa is built on top of the
Objective-C programming language. As we shall see, Objective-C is a simpler and more
powerful object-oriented extension of the C programming language than C++.

Cocoa embodies the principles of object-oriented programming from its user interface
down to its very core. This greatly simplifies the task of building applications for Mac OS
X. The down side is that it makes the Cocoa environment very different from the
environments to which most programmers are accustomed, and consequently, although it is
an easy-to-program environment, the initial learning curve is quite steep.

The Roots of Cocoa

Cocoa is a relatively new offering from Apple, but the underlying operating
system on which Cocoa is based is more than a decade old. Although today
Cocoa is an integral part of Mac OS X, much of the Cocoa application
framework dates back to the NeXTSTEP operating system (and subsequently the
OpenStep system) developed by NeXT Computer, Inc., during the late 1980s-
mid 1990s. When Apple bought NeXT in 1996, it also bought the right to use the
software created by NeXT. The fact that Mac OS X is based on such a solid and
long-lived operating system is very important: Cocoa is not some new fad
technology that Apple is trying out today but might soon discard; it is a mature,
time-tested development environment that has been used and improved by many
thousands of programmers over the course of more than a decade.

Cocoa Versions

All the examples in this book were developed and tested under Mac OS X Version 10.1.
Although future versions of Cocoa are sure to add new features and visually change some
of the user interfaces, Objective-C's dynamic binding all but assures that any Cocoa
program developed under Version 10.1 will continue to run on future versions of the
Macintosh operating system. Furthermore, we've tried to focus the subject matter of this
book mainly on the underlying concepts and features of the operating system - and many of
these haven't changed much since the initial release of NeXTSTEP 1.0 in 1989. For these
reasons, this book is likely to stay in print, and be very useful, for quite some time after it is
published.

Cocoa, Objective-C, and Java

Although the Cocoa Foundation and the Application Kit are written in Objective-C, Cocoa
programs can be written in either Objective-C or Java. This freedom comes from the fact
that Java and Objective-C have very similar models of object-oriented programming,
which has allowed Apple to create a "Java bridge" that allows Java objects to invoke
Objective-C methods and vice versa. Java can even be used to subclass Objective-C
classes!

Despite the ability to intermix Objective-C and Java within a single program, this book
focuses solely on the Objective-C programming language. Objective-C is the native

environment of the Foundation and the Application Kit, and it is generally easier to debug
Cocoa programs written in Objective-C than to debug the same programs written in Java.
Furthermore, there are performance considerations: Cocoa-based programs run faster if
they are written in Objective-C than if they are written in Java.

One significant advantage of Java over Objective-C is the large number of third-party class
libraries that are now available for Java. If you need to use one of these libraries, you can
benefit from using Java for some or all of your Cocoa applications. In particular, Apple's
Enterprise Objects Framework now supports only the Java-based application programming
interface (API).

One of the primary differences between Java and Objective-C is memory management:
Java has automatic garbage collection, whereas Objective-C has a reference-count-based
memory-management system. The Objective-C system is cruder, but it gives programmers
greater control and generally produces applications that run faster.

For detailed information on programming Cocoa applications in Java, see the upcoming
O'Reilly book Cocoa and Java. (And for those interested in writing Perl applications for
this new platform, watch for Programming Cocoa Applications with Perl, also coming
soon from O'Reilly.)

The Foundation Classes

Many of the Cocoa class libraries are actually implemented with the Apple Foundation
library. The Foundation provides a series of highly efficient, low-level services for building
advanced applications. Built into the Foundation is support for Unicode strings, XML
property lists, URL resources, preferences, and other key Mac OS X technologies.

The Foundation library is used by both Cocoa and Carbon, and it provides for improved
compatibility between applications written with these two application frameworks.

You can find out more about Foundation by reading the documentation that comes with the
developer tools (it is installed in /Developer/Documentation/
CoreFoundation). For the latest updates, check out the version at:

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/
FoundationTOC.html

Drawing with Quartz

One of the most important differences between Mac OS 9 and Mac OS X is the way these
systems draw on the computer's screen. Mac OS 9 does all of its drawing with Apple's
QuickDraw APIs. Mac OS X, in contrast, does its drawing with Quartz.

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html

Quartz integrates into the Macintosh operating system many advanced features that were
previously available only in Apple's QuickDraw GX and NeXT's Display PostScript
drawing environments. Quartz also brings native support for Adobe's PDF. Programs
written for Quartz can display PDF files as a native file type. They can also capture their
drawing commands and generate PDF files directly, without having to use a PDF Writer or
Distiller program.

Besides looking great, Quartz makes it much easier to move completed documents from
Mac OS X systems to computers running the Windows or Unix operating systems, because
both of these systems have freely available readers that will display PDF-encoded files.

You can find out more about Quartz by reading the documentation that comes with the
developer tools (it is installed in /Developer/Documentation/
CoreTechnologies/graphics/Quartz2D). For the latest updates, check out the
version at:

http://developer.apple.com/quartz/

Mac OS X and Classic Mode

Of course, Apple couldn't release a new operating system for the Macintosh and not allow
existing Macintosh programs to run on it, so Mac OS X also supports the "Classic"
Macintosh environment. If you double-click on the icon for an application that runs on
older Mac OS computers, a Mac OS X system will launch a copy of Mac OS 9 within Mac
OS X. When you activate this application, the desktop will take on the look and feel of the
Mac OS 9 environment. It's weird, but you can run those old applications quite well in
Classic mode, and it works better than an emulation because it's actually a full version of
Mac OS 9.x running in protected memory space under Mac OS X.

However, while Mac OS X systems will run Classic and Carbon-based applications, the
future is Cocoa. Apple says that all new applications for the Mac should be written with the
new Cocoa APIs, rather than with the old ones. And because it is so easy to use Cocoa,
why would you want to do anything else?

http://developer.apple.com/quartz/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

Organization of This Book

This book is divided into the following four parts.

Part I, Cocoa Overview

The first part of this book introduces the Mac OS X interface (Aqua), Cocoa developer
tools, the Objective-C language in which Cocoa is written, and Cocoa programming itself.

Chapter 1, contains an overview of Aqua features and behaviors that programmers should
understand so that they can build applications that look and feel like Mac OS X
applications. In particular, programmers writing new Mac OS X applications should follow
Aqua's stringent interface guidelines so as not to confuse users. Chapter 1 also contains a
tutorial on how to become a power user of Mac OS X and the Aqua GUI. Although people
familiar with Mac OS X and Aqua might want to skip this chapter, it contains many hints
and shortcuts with which even experienced Cocoa programmers may not be familiar.

Chapter 2, contains an overview of Project Builder, Interface Builder, and the gdb
debugger, the three most important Cocoa developer tools. It also contains an introduction
to the (Unix) Terminal and several other useful developer tools.

Chapter 3, uses Interface Builder, a revolutionary program for drawing and wiring together
objects in application interfaces, to build a very simple application without any coding
whatsoever. We'll use it to create a little program that plays a sound and updates a text field
when the user moves a slider.

Chapter 4, builds an application from the ground up, using only Objective-C and the Cocoa
Application Kit. This will give you a hands-on feel for what Interface Builder is actually
doing. We also use this chapter to introduce the syntax and framework of the Objective-C
language.

Part II, Calculator: Building a Simple Application

The second part of this book is focused on building a simple application - a calculator -
which we extend piece by piece through four chapters.

Chapter 5, introduces the Calculator application project. We create the calculator's window
and build a simple Objective-C object that handles the math features of the calculator. At
the end of the chapter, you'll have a working four-function calculator.

Chapter 6, adds an About box to the Calculator application. This gives us an opportunity to
use some additional features of Interface Builder. We also clarify Cocoa's system of
outlets, connections, and actions. At the end of this chapter, we show you how to add an
application icon that identifies the application in the Finder and the Dock.

Chapter 7, introduces the concept of delegation - designating objects to perform functions
for other objects. In this chapter, we make the four-function calculator work with other
bases (binary, octal, and hexadecimal) and use delegation to set the initial base. In the
second half of the chapter, we use an example of programmatically resizing a window to
introduce Cocoa's NSWindow and NSView classes.

Chapter 8, introduces the responder chain, the chain of objects that Cocoa uses to process
events such as keypresses and mouseclicks. At the end of the chapter, we use our newfound
knowledge to modify the calculator so that users can enter numbers by typing on the
keyboard, in addition to simply clicking with the mouse. This chapter completes our work
on the Calculator application.

Chapter 9, provides background on the Mach operating system upon which Mac OS X is
based and on the Quartz Window Server that Mac OS X uses to draw on the screen and
manage events. This chapter provides useful, general information that will help us build
more complicated applications in subsequent chapters.

Part III, MathPaper: A Multiple-Document, Multiprocess Application

The third part of this book focuses on building a new application called MathPaper.
MathPaper is similar to a word processor in that it supports multiple windows, but it
behaves very differently. Users can enter mathematical expressions in a MathPaper
window, and the application will solve the expressions that were typed. The application
uses a back-end mathematical processor called Evaluator to do the mathematical
calculations. Chapter 15 leaves MathPaper but includes several small examples that
demonstrate drawing in NSView objects.

Chapter 10, introduces the MathPaper application and shows you how to write applications
that control multiple windows. We also build MathPaper's back end (Evaluator) in this
chapter, but we don't connect it to the application until the next chapter.

Chapter 11, ties MathPaper's front and back ends together with a Cocoa object that can
spawn subprocesses. By the end of this chapter, MathPaper will be able to calculate
mathematical expressions typed in by users.

Chapter 12, discusses Microsoft's Rich Text Format (RTF), which Cocoa uses to encode
information such as font, point size, and alignment into a text stream. We use RTF to make
MathPaper's output look more professional.

Chapter 13, introduces Cocoa's facilities for dealing with document files. Using
MathPaper, we show how to register a filename extension with the Finder, how to archive
information into streams, and how to save and load files with the Save and Open dialogs.

Chapter 14, shows the basics of how to draw in a window. We demonstrate this by making
an animated About box for the MathPaper application.

Chapter 15, leaves MathPaper. The chapter explores the NSView class in general and the
drawRect: method in particular. We build several small programs in this chapter to show
how NSViews work.

Part IV, GraphPaper: A Multithreaded, Mouse-Tracking Application

The fourth part of this book focuses on building one last major application, called
GraphPaper. Given a range and step, GraphPaper will graph a mathematical function in
color and use mouseovers to identify graph points. We also embed in GraphPaper many of
the standard features of commercial Mac OS X applications, such as services, copy and
paste, and the use of the Mac OS X preferences database.

Chapter 16, introduces GraphPaper, a complex application that graphs a function in two
dimensions. This application is multithreaded, meaning that it has several execution
threads and does several different things at the same time. It uses the same Evaluator back
end that MathPaper used.

Chapter 17, continues our discussion about drawing in color with Quartz. We show how to
enable users to change the color of the graph, axes, and label via a Preferences dialog.

Chapter 18, shows how to catch mouse moves and handle more kinds of mouse events. We
do this by modifying the GraphPaper application so that it displays the (x,y) coordinates of
the graph for wherever the user places the mouse.

Chapter 19, shows how to put a zoom button on a view to change its magnification. We
also show how to save a graphic image as a PDF file or as a TIFF image.

Chapter 20, shows how to put data on and remove data from the pasteboard (clipboard).
We also show how to make GraphPaper a Mac OS X service that shows up in the Services
menu, so you can graph functions that are selected in other applications.

Chapter 21, shows how to build a multi-view Preference panel and how to save its contents
into the defaults database.

This book also contains an appendix, Appendix A, which lists other books and online
resources that you might find helpful in programming Cocoa.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

What You Will Need

To use the examples in this book, you will need a computer running Mac OS X Version
10.1 or later. You will also need a copy of the Mac OS X developer tools, which Apple
currently distributes for free along with the Mac OS X operating system. The Developer
Tools distribution contains everything you need to develop a Cocoa application, including
the GNU Objective-C compiler (developed by both Apple and the Free Software
Foundation), the assembler, the linker, all of the libraries, and all of the Cocoa header files.
The Developer Tools distribution also contains Apple's online developer documentation,
although this information can also be accessed for free from Apple's developer web site at:

http://developer.apple.com

http://developer.apple.com/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used to emphasize new terms and concepts when they are introduced.

Bold

Used for method names in the text.

Constant width

Used for code examples and any system output. It is also used for file, directory,
function, and variable names, and for commands and URLs.

Constant width italic

Used in examples for variable input or output.

Constant width bold

Used in examples for user input and to highlight new code that is being inserted
into existing code.

Used as shorthand to represent menu command choices. For example, choosing the
Copy command from the Edit menu will be written Edit Copy.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which provides code and lists errata and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/buildcocoa/

From that page, you can download all of the code that we developed throughout this book.
However, we recommend that you use the online code as a last resort. We believe that
you'll learn more about programming Cocoa if you take the time to type in the
demonstration programs, thinking carefully about the code as you type it, rather than
simply downloading and running the finished programs. We've provided the full code,
however, so you'll have something to fall back on in the event that the programs you type
in don't work.

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/buildcocoa/
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Preface

Acknowledgments

This book is an outgrowth of a book we wrote back in the early 1990s called NeXTSTEP
Programming, Step One: Object-Oriented Applications (Springer-Verlag). Many NeXT
people helped us with that original project (and quite a few of them are now at Apple
Computer, Inc.); others helped when we made an attempt to update the book for Apple's
Rhapsody system back in 1997 (that system was never released). Many more Apple
employees contributed time and energy reviewing this book, helping us obtain software
and other resources, and answering our many technical questions. A very big and sincere
thank you to all of these Apple employees.

We are also very grateful to the following people who provided technical reviews and other
support while we were working on this book:

● Bill Bumgarner at CodeFab
● Andrew Stone at Stone Design
● Carlos Weber, Kristofer Younger, Kurt Revis, Lance Bland, Simon Stapleton, Tom

Waters, and Eric Peyton, via the cocoa-dev mailing list
● Gary Longsine at illumineX, inc.
● Ondra Cada at OCSoftware
● Mike Beam at the University of Texas
● Scott Anguish at Stepwise
● Don Rainwater at the University of Cincinnati
● Michael "wave" Johnson at Pixar
● Louise Mahoney

Thanks as well to both Apple and James Duncan Davidson for providing some of the
source material that we used in writing the appendix.

Our editor Debby Russell did a fabulous job of championing this book with O'Reilly,
working with Apple, and editing this book. Jessamyn Read created illustrations that helped
convey some of the more difficult ideas. Many thanks to Rachel Wheeler, the production
editor and copyeditor for this book; Emma Colby, who designed the front and back covers;
David Futato, who designed the interior format and wrestled the many icons into
submission; Leanne Soylemez, the proofreader; and John Bickelhaupt, who indexed the
book.

Book: Building Cocoa Applications: A Step-by-Step Guide

Part I: Cocoa Overview

Part I, Chapters Chapter 1 through Chapter 4, introduces the Mac OS X
interface (Aqua), Cocoa developer tools, the Objective-C language in which
Cocoa is written, and Cocoa programming itself.

● Chapter 1
● Chapter 2
● Chapter 3
● Chapter 4

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part I: Cocoa Overview

Chapter 1. Understanding theAqua Interface

The Mac OS X graphical user interface (GUI) is called Aqua. Aqua's advanced use of
color, animation, and transparency and its plethora of powerful user-oriented features make
it a true delight to use for both novices and power users. To write applications that function
well in this environment, a developer should first become proficient at using Aqua as a
power user. This means knowing Aqua's GUI guidelines and how applications are
structured well enough to accomplish tasks quickly and efficiently. You can then use this
knowledge to write applications that provide better interfaces for others.

This chapter contains an introduction to the Aqua GUI and its guidelines. The references at
the end of this chapter contain the web addresses for Apple's guidelines. No previous
experience with Mac OS X is assumed. All screen shots were taken from Mac OS X
Version 10.1.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.1 What Makes Mac OS X So Special?

Mac OS X is special for two important reasons. First, it brings the popular Macintosh
operating system interface into the 21st century with a new, object-oriented environment
that is almost as easy to program as it is to use. Second, Mac OS X brings the world's
easiest-to-use interface (Aqua) to the venerable Unix operating system, which is the
underlying basis of Mac OS X. This has allowed Apple almost overnight to claim the
largest installation of Unix operating systems on the planet: tens of millions! There are now
more installed copies of Mac OS X than of all other desktop Unix variants combined,
including Sun, Linux, HP, IBM, and more. Unix lovers, take note!

Aqua is the interface to all of the next-generation Mac OS X applications, including the
Finder, the Dock, Mail, TextEdit, and many other applications that are bundled with Mac
OS X. The most important of these applications is the Finder, which is an improved
reimplementation of the traditional Finder for the Macintosh.

The Mac OS X Finder lets you start up programs and manage the filesystem primarily
through point-and-click activities that are natural to the user. With the Finder, you can copy
10 MB of files from one disk to another, launch (run) several programs, open and print an
80-page document, recursively change the permissions on files, and view a graphics file in
a panel all at the same time! That would not be possible with previous versions of Mac OS.

Mac OS X is also special because of its embedded imaging model, Quartz. (An imaging
model does the actual drawing on the screen or on a printer.) Based on Adobe's Portable
Document Format (PDF), the next-generation version of Adobe's PostScript page-
description language, Quartz provides a true WYSIWYG ("wizzy-wig," or what-you-see-is-
what-you-get) capability because the imaging model for printing is the same as that for the
screen. This is a marvelous asset for any application that uses text or graphics (and what
application doesn't?).

Where Mac OS X shines brightest, however, is in its development environment, Cocoa. As
you'll discover by working through this book, the object-oriented Cocoa environment
makes it surprisingly easy to design new applications and then turn them into working
applications. Our main design tool is Interface Builder (IB), perhaps the world's most
powerful tool for building application interfaces. With IB, you can create menus, windows,
controls, etc. and make connections between them graphically. IB allows easy access to
Cocoa's Application Kit , a set of more than 120 powerful classes that define and create
objects for use by your applications. We'll discuss these powerful tools in the next chapter.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.2 A Quick Look at the Mac OS X User Interface

Let's take a look at the main components of the Mac OS X user interface. Figure 1-1
contains a screen shot of a typical Mac OS X user's screen. The screen background, called
the desktop, is light gray (you can change the color). The always-available Apple system
menu at the top left opened when the Apple icon above it was clicked. The Mac OS X
Finder is the active application, and thus its menu populates the rest of the menu bar at the
top of the screen. The Finder window at the top of the screen is the active window, and its
Info dialog is at the bottom left. (A dialog is a special type of window that gives
information about or instructions to an application.) The Info dialog contains a number of
labels that show information about the selected folder and a checkbox to set a folder
attribute. It also contains a pop-up menu that can be used to change the view (information)
that the Info dialog currently displays. We'll discuss these screen objects in more detail
later in this chapter.

Figure 1-1. Mac OS X user's desktop

The Dock at the right of Figure 1-1 contains 14 icons, the first 12 representing applications
(programs). (The Dock can also be positioned at the bottom or left of the screen; it's the
user's preference.) The two icons at the bottom of the Dock represent a minimized

document window and the Trash.

The Finder ("Happy Mac") icon, which represents the Finder, is always at the beginning
(left or top) of the Dock. If you move your mouse over an application icon in the Dock (i.
e., move the mouse pointer over an icon without pressing or clicking), the application's
name will be displayed next to the icon. If you press and hold the mouse button down on an
application icon (e.g., the Finder icon) in the Dock, a menu will pop up and display (as
menu items) the names of the windows that are currently open for that application (see
Figure 1-2). If you continue to hold down the mouse button and then drag it and release it
over one of those menu items, the corresponding window will come to the foreground. This
is especially handy if an application has many open windows or has windows buried under
the windows belonging to other applications.

Figure 1-2. The TextEdit icon in the Dock with associated menu

The Trash icon at the end of the Dock represents a folder (directory) where files are
temporarily stored for later deletion or restoration. Files are deleted only when the Empty
Trash command is chosen from the Finder menu. Files are restored by clicking the Trash
icon and then dragging the files out of the resulting Finder window and dropping them into
another Finder window or onto the desktop. The real-life analogy of a trash basket in your
office works here: if you throw a piece of paper into the basket, you can pull it out again if
you want; however, after the basket has been emptied, you've lost the piece of paper
forever.

The text windows with white backgrounds at the bottom center of the screen in Figure 1-1
belong to the TextEdit word-processor application. The icon directly above the Trash icon
in the Dock represents a minimized TextEdit window. The icon at the lower-right corner of
the screen next to the Dock is a link to the Calculator application, an application that we'll
build from scratch starting in Chapter 5. Double-clicking this icon (or any application icon
in the Dock) will launch the application.

There are many other application icons in the Dock. If a small black triangle is shown next
to an application icon, then the associated application is running (although its windows and
menu might be hidden from view). The applications without triangles next to their icons

are not running. Single-clicking any icon representing an application (running or not) in the
Dock causes the associated application to become the active application, with its menu
displayed in the menu bar at the top of the screen.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.3 Basic Principles of the Aqua Interface

Before the release of the original Macintosh, different applications running on the same
computer in environments such as MS-DOS had wildly different interfaces. Some
applications used the mouse; others used only the keyboard. Some applications were
character-oriented; others created their own primitive window systems. This was a heavy
burden on users and severely limited their overall productivity.

One of the primary goals of the original Macintosh was that different applications running
on the same computer would have a consistent user interface. Consistency helps users
because they don't have to learn a new set of rules to perform the same basic operations as
they move from application to application. (Think of how easy it is to drive different
brands of automobiles - no additional training is required because they all have steering
wheels, brakes, and accelerators that work the same way.)

1.3.1 The Toolbox, Carbon, and Cocoa

The original Macintosh delivered this consistent user interface through a set of procedures
stored in a read-only memory (ROM) called the Toolbox. Developers who wrote
applications for the Mac, regardless of whether they were writing a word processor or a
spreadsheet, were encouraged to use the Macintosh Toolbox to display the application's
user interface. This made things easier for users, because all applications behaved in the
same way. It also made things easier for developers, because they did not have to
reimplement things like scrollbars or menus for every application that they wrote.

Over the years, another advantage of the Toolbox became evident; as the operating system
was improved and new features were added to the Toolbox, existing programs could get
new functionality "for free." When Apple moved from Macintosh System 6 to System 7,
well-behaved applications could suddenly operate in a multiapplication environment.
Likewise, when System 7 gave way to Mac OS 8, applications that used the Toolbox and
followed its conventions were able to take advantage of Mac OS 8's visual enhancements
to the Macintosh interface. Indeed, the Toolbox was so integral to the Macintosh platform
that many applications built without the Toolbox proved to be buggy and crashed a lot, and
as a result, they were not successful in the marketplace.

Unfortunately, the reliance on the Toolbox came with a price: once a function call was
placed in the Toolbox, Apple could not remove it, for fear of breaking existing
applications. Over the years, the Toolbox became cluttered with many slightly different
versions of the same function, some of which had been developed long ago and had
inherent problems. The Toolbox was, in a word, bloated.

With the move from Mac OS 9 to Mac OS X, Apple revised the Toolbox and removed
many of the early application programming interfaces (APIs). Apple gave the name
Carbon to the remaining Macintosh APIs, which are natively supported by the Mac OS X
operating system. Applications that use the original "Inside Macintosh" Toolbox APIs can
be run on Mac OS X only inside the Macintosh "Classic" environment, which is essentially
a copy of the Mac OS 9 operating system that runs within the Mac OS X environment.

With Mac OS X, Apple also introduced a new set of APIs known as Cocoa - a set of APIs

for the 21st century. Because these APIs were developed independently of Apple,[1] they
are fundamentally different from the original Macintosh APIs. Whereas the Toolbox and
Carbon APIs are in the C programming language, the Cocoa APIs are written in Objective-
C, an easy-to-use, object-oriented programming language that is well suited to writing

GUIs.[2] The Cocoa environment provides consistency and ease of programming that are
unparalleled among the other programming environments available today.

1.3.2 Consistent Aqua

Aqua's consistency means that windows in different applications have the same appearance
and functionality; for example, mouseclicks and drags perform the same kinds of actions,
and common menu commands are in the same place and have the same names, the same
keyboard equivalents, and so on. The overall look and feel of all Mac OS X applications is
the same. Contrast this with the haphazard way that interfaces to some Microsoft Windows
applications have been developed over the years, and you'll begin to see why we like Mac
OS X so much.

Mac OS X and Aqua put you in charge of your desktop and its windows. Through
preference settings, info panels, resize controls, icon dragging, and other means, you can
change the size, visibility, and location of almost every object on your desktop, decide
when your Dock is visible and what it looks like, change the size of most text, and even
determine which icons represent your folders.

With Aqua, the primary instrument that you use to interact with the computer is the mouse.
Compared with the computer's keyboard, the mouse seems more natural for most users,
because using the mouse is a better analogy for how we interact with objects in the real
world. For example, if a window on the desktop represents a piece of paper on a desk, it's
more natural for a user to move that window by dragging the window to a new place on the
screen than by typing a sequence of keyboard commands.

Unlike previous versions of the Macintosh operating system, however, much of Mac OS X
can also be controlled from the keyboard. Many common commands have keyboard
equivalents, such as Command-X for Cut and Command-V for Paste, that will help you use
applications more efficiently. Thus, people who lack the dexterity or the vision required to
accurately use a mouse can still benefit from the Mac OS X environment by using the
keyboard (in particular, the tab and arrow keys). Universal access and speech features are

also available in Mac OS X.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.4 The Mouse and Cursor

You can do two basic things with a mouse: move it and click its button.[3]

Four different mouse events (actions) can be derived from these basic actions:

Clicking (single-clicking)

Pressing and releasing a mouse button (mouse down and mouse up) without
changing the position of the mouse.

Clicking (or single-clicking) is used to select an object or location on the screen.
For example, you can click a button or menu command to select some action, click
an icon or filename in a list to select it for further action, click in a window to bring
it in front of other windows, or click on a piece of text to select an insertion point.

Multiple-clicking

Pressing and releasing a mouse button two or three times in rapid succession
without changing the position of the mouse.

Multiple-clicking extends the action of clicking. For example, you can click on a
piece of text to select an insertion point, double-click to extend the action to select
the nearest word, and triple-click to select the entire line or paragraph. Likewise,
you can click a file icon in the Finder to select a file and double-click the icon to
open the file in its associated application.

Dragging

Pressing and holding down a mouse button and then moving the mouse (and thus
the cursor); release the mouse button to end.

Dragging is used primarily to move an object or define a range. For example, you
can drag a window's title bar to move the window, drag a file icon to reposition it in
a Finder window, or drag the knob on a slider or scroller to select a value or scroll
through a window. You can also use dragging to define a range of characters in a
text area, or to select a group of graphics in a drawing area or icons in a file area.
The last two operations use a technique known as rubberbanding, where a lightly
drawn rectangle indicates the selection range.

Pressing

Pressing and holding down a mouse button in place; release the mouse button to
end.

Pressing is used mainly as a substitute for repeated single-clicks. For example, you
can repeatedly click a scroll button to move through the contents of a document
window, or you can simply press the scroll button and let the window scroll.

The terminology we'll use in this book is that one chooses menu commands, clicks or
presses on buttons or icons, selects items in a list, drags icons across the desktop, and
drags across items in a list (e.g., files in a Finder window).

1.4.1 Mouse Action Paradigms

It's not crucial for users to know Aqua's mouse action paradigm terminology, because most
Aqua actions are fairly intuitive. However, Cocoa developers should understand these
mouse action paradigms (patterns, archetypes) and the associated terminology. You need to
be aware of the paradigms so that you don't disrupt their naturalness for users of your
applications. You also need to understand the terminology in order to properly use the
procedures that come with Cocoa and to understand Apple's documentation. Following are
the four Aqua mouse action paradigms, and some examples of each:

Direct manipulation

A user drags a window's title or resize bar to move or resize the window, clicks in a
partially obscured window to move the window to the front, or drags a file's icon to
the Trash icon to delete it. The user directly manipulates these objects.

Target selection

A user drags across a sequence of characters to select them for a change in font, or
drags a rectangle around several graphics objects to select them for copying. These
objects have been selected for some targeted action.

Targeted action through controls

A user clicks a button to change a text font, drags a slider knob to change the size
of an object, or clicks a menu command to make a panel appear. We'll discuss
control objects in depth later in this chapter.

Modal tool selection

A user clicks a pencil or rectangle icon in a palette of tools in a graphics editor to

select a drawing tool, and the cursor changes to indicate the mode of drawing. The
word "modal" implies that the application has distinct modes. When an application
is in a modal state, some (or most) of its commands may be unavailable, or
subsequent mouse actions may be specific to that mode.

Fortunately for developers, most responses to direct manipulation and target selection by
the mouse are handled automatically by Cocoa objects and by Quartz. For example, a
developer doesn't have to do anything to make a button highlight or a window move in
response to user actions; Cocoa button objects automatically highlight when clicked and
Quartz handles all window movements directed by users. On the other hand, an action in
response to a change in a control object (e.g., a button click, slider drag, or menu
command) or a cursor change in response to a modal tool selection is usually handled
explicitly by the developer.

1.4.2 Cursors

The Cocoa cursor is a graphics image 16 pixels square that moves with the mouse. (A pixel
is the smallest addressable point on the computer's bitmapped display.) Moving the mouse
quickly moves the cursor farther than moving it slowly - even if the distance moved is the
same. Picking up the mouse and placing it elsewhere does not change the position of the
cursor.

The cursor can take many different shapes, depending on the context. Its shape can change
in response to entering or exiting a window or graphics area and in response to tool or
target selection. The most common cursors are shown in the following list. The hot spot, or
the exact location (point) of the screen referred to by the cursor, depends on the type of
cursor currently displayed.

 Arrow

For selecting, clicking, etc.; the hot spot is at the tip of the arrow. This is the most
common cursor.

 Arrow with plus sign

Indicates that a copying operation is about to take place in the Finder or another
application. The hot spot doesn't matter, because this cursor appears only when the
user is dragging another object.

 Arrow with link

Indicates that a link (reference) operation is about to take place in the Finder or
another application. As with the arrow-with-plus-sign cursor, the hot spot doesn't
matter.

 I-beam

For text input positioning, editing, etc.; the hot spot is at the center.

 Spinning disk

This "wait" cursor indicates that an application is performing an operation that must
be completed before you can continue your work in that application; however, you
may activate another application by clicking in one of its open windows or its icon
in the Dock, and you won't have to wait to use the new application. This is a huge
user benefit provided by Unix. The hot spot is at the center.

 Pencil

For drawing lines in a graphics editor or other such program; the hot spot is at the
tip. Other, similar drawing cursors include the paintbrush, paint pot, etc.

 Crosshair

For drawing shapes such as rectangles or circles in a graphics editor; the hot spot is
at the center.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.5 Window Types and Behavior

On-screen windows fall into four principal categories, which vary in appearance and
function:

● Document windows
● Utility windows
● Dialogs (includes sheets)
● Alerts

We'll describe each of these window types in the following sections. After that we'll
discuss how and when these four types of windows become the main or key window in an
application. For many of our examples we'll use the TextEdit application, the basic word-
processor application bundled with Mac OS X and located in the /Applications
folder.

1.5.1 Document Windows

A document window is file-based and is the main working area of an application. A
window containing a text document being edited in a word processor is a document
window, as is a window containing a spreadsheet in a spreadsheet application or an image
being manipulated in a graphics editor application. Most document windows, like some of
the windows in Figure 1-1 and the window in Figure 1-3, have resize controls and close,
minimize, and zoom buttons. The resize control is at the lower-right corner of a document
window, while the three window-control buttons are on the left side of the window's title
bar.

Figure 1-3. A document window in TextEdit editing a file called "Document Window"

The small proxy (file) icon to the left of the title in a document window can be manipulated
with drag-and-drop, as can a file icon in the Finder. Command-pressing the proxy icon
causes the complete folder path of the document file to appear, and when a user drags to
one of those folders and releases the mouse button, the corresponding folder opens in the
Finder (even if the proxy icon is in a document window from another application, such as
TextEdit.)

A document window's close button displays an X inside it when the document is saved to
disk and a dot when the document has not been saved. Document windows usually contain
vertical and/or horizontal scrollers when the window contents are too large to fit in the
window. An application can have many document windows open at the same time.

1.5.2 Utility Windows

Utility windows provide tools or controls that support document windows. The Font and
Colors windows that are available in many applications are utility windows (see Figure 1-
4). Utility windows float over document windows and are distinguished by their shorter (in
height) title bars and lack of a (working) minimize button. Utility windows sometimes have
no title and have only the close button visible (unlike those in Figure 1-4). Cocoa
programmers and former NeXTSTEP users refer to utility windows as panels. The Mac OS
X terminology guidelines reject use of the term "panel," but we will use it in this book
anyway because the Cocoa API uses it extensively.

Figure 1-4. The Colors and Font utility windows in TextEdit

1.5.3 Dialogs

A dialog is a window that seeks input from a user in response to a specific request.
Examples include the familiar Open, Save, and Print dialogs. The Show Info dialog in the
Finder is another example. Dialogs come in three types - modeless, document modal, and
application modal:

Modeless dialog

Does not prevent the user from working in any other window of the application.
Users can change settings in a dialog while still interacting with document
windows. The Find/Replace tool in a word processor (see Figure 1-5) is an example
of a modeless dialog; Preferences is another. In a modeless dialog, the close button
is usually the only window-control button that is enabled.

Figure 1-5. The Find modeless dialog in TextEdit; compare with document and utility
windows

Document modal dialog

Prevents the user from working with a particular document, but not with other
documents in the same or in other applications. Document modal dialogs are
always rectangular sheets that animate downward from a document window's title
bar; see Figure 1-6 for an example. Each sheet is attached to a document window,
so there is no way that a user can be confused about which document will be saved,
printed, etc.

Figure 1-6. The "Save as" document modal sheet (window) - the document
temporarily can't be edited

Application modal dialog

Prevents the user from working anywhere else within the application. The user can
still switch to and work in other applications. An Open dialog is a common
example of an application modal dialog. In TextEdit, for example, no document
window can be edited while the Open dialog is displayed (see Figure 1-7).
However, you can switch to the Finder or any other application and use it as you
would normally. Application modal dialogs typically display their functions in the
title bar (e.g., Open) and do not have any window-control buttons (e.g., no close
button) because they are dismissed with an OK, Cancel, or other push button at the
bottom of the dialog. Application modal dialogs float above document and utility
windows, which makes sense because of the user's need to dismiss them before
working elsewhere in the application.

Figure 1-7. The Open application modal dialog in TextEdit

1.5.4 Alerts

Alerts are displayed in windows or sheets. Alert windows pop up in the center of the screen
and display important messages to notify users that a potentially negative event is about to
occur. If a user tries to quit the TextEdit application when two or more documents are

unsaved, for example, an application modal alert will be displayed, as shown in Figure 1-8.
Another common example is the Finder alert that pops up when you try to empty your
Trash.

Figure 1-8. Alert displayed after a user tried to quit TextEdit without saving
documents

An alert can also be document modal (i.e., the alert applies to only a single document), in
which case it is displayed as a sheet. For an example, see Figure 1-9. Note also that the
"Save as" sheet in Figure 1-6 is not an alert; it's a dialog.

Figure 1-9. Alert for a single document displayed as a sheet in TextEdit

Application modal alerts have no title in the title bar and are displayed front and center so
the user takes notice. Document modal alerts are sheets attached to document windows.
Both types of alerts display the application icon, a large, bold-font message, and some
smaller-font informational text. A Cancel button (if possible) and default action button also
appear near the bottom of the alert.

1.5.5 Info Dialogs

Info dialogs are common in Mac OS X. They provide details about selected files, objects,
and so on in the active application. For example, the Finder and Interface Builder rely
heavily on modeless Info dialogs. Two examples of the Finder Info dialog for two different
selections are shown in Figure 1-10.

Figure 1-10. Info dialogs from the Finder

Some people refer to an Info dialog as an inspector, because the Info dialog allows you to
inspect attributes of the selected item.

Under normal circumstances, an Info dialog is on the screen only while its associated
application is active. By pressing the Info dialog's close button, you can close the dialog
without adversely affecting any of the application's documents.

1.5.6 Multi-View Windows

Some applications support multiple views within the same window. For example, every
Finder main window supports three different views: the icon view, the list view, and the
column view. The System Preferences application also displays many different views in the
same window. These views can be selected by clicking an icon-button in the toolbar. In
some multi-view windows, different views can be selected by clicking a tab. The System
Preferences Displays and Sound windows are examples of multi-view windows with tabs.
Each view in a multi-view window is called a pane.

1.5.7 Windows with Drawers

A few Mac OS X windows have "child" windows called drawers. A drawer slides out from
its parent window and typically contains controls that are used regularly but don't need to
be visible all of the time (contrast drawers with utility windows, which typically contain
controls that often need to be visible all of the time). The drawer of mailboxes in the Mail
application is shown at the left in Figure 1-11. The drawer can be made visible or invisible
by clicking the Mailbox (toggle) button in the Mail window's toolbar.

If there is no room for the drawer on the left side of the window, it will open on the right
side.

Figure 1-11. Drawer (left) of mailboxes in Mail application

1.5.8 Main and Key Windows

The key window is the window or dialog that will respond to the Mac keyboard. The main
window is the document window that corresponds to the active document (e.g., a document
window in a word processor or image window in a graphics editor). The main window is
usually also the key window, because users work in the main window most of the time. A
main window relinquishes its key-window status temporarily while a user gives
instructions to an application, usually in a dialog or utility window that has become the key
window. The key window's title bar is always highlighted, and its title is displayed in
black. The main window remains highlighted even when it's not the key window.

We'll give you two examples of main and key windows in TextEdit. The first example,
which has two document windows, is shown in Figure 1-12. The document window being
edited (Doc 2) is the main window, while the Find dialog is the key window. The other
document window is neither main nor key.

Figure 1-12. Main window (Doc 2) and key window (Find dialog) in TextEdit

For a second example, suppose that you are using TextEdit to edit a file in the main
document window, and you type Command-T to display the Font utility window. The main
document window will remain the key window. If you then click the mouse in the Sizes
text field that is used to control point sizes in the Font window, the Font window will
become the key window, but the document window will remain the main window. When
you close the Font window, the main window will go back to being the key window.

1.5.9 Window Order

When you are using Mac OS X on a large display, you may often see 20 or more windows
and other objects on the screen. Without a clear ordering scheme, a user's screen would
often be in chaos, and the GUI would lose much of its ease of use. For example, suppose
that a new user had spent hours editing a document within an application without saving
her work. Suppose also that an alert window for that application popped up and demanded
her action before she could save the document. If the alert window were completely hidden
by other windows, the user might think she had a hung application, resign herself to losing
hours of work, and kill the application (or worse, restart). If the alert window were front
and center, this probably wouldn't happen. As another example, suppose that user couldn't
find a window for an application you wrote because it was hidden under several other
windows. She wouldn't be very productive if she regularly had trouble finding the window
when she needed it, and she probably wouldn't have a great desire to use your application
again!

To prevent problems like these, Mac OS X organizes the on-screen windows into several
layers. If two windows belong to the same layer, either one may be in front. However, if
two windows belong to different layers and occupy the same screen space, the one in the

higher level is always in front. Menus take display precedence over all other on-screen
objects.

The display order that Mac OS X screen objects follow, from front to back, is as follows:

1. Regular menus attached to the menu bar, pop-up menus, pop-down menus

2. The Dock

3. Alerts

4. Application modal dialogs

5. Utility windows

6. Modeless dialogs

7. All other windows, including document windows and document modal dialogs
attached to document windows

The frontmost window is called the active window. It is distinguished by a title with black
text and colored view-control buttons at its upper-left corner.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.6 Menus and the Menu Bar

Menus contain a list of commands, states, and submenus that can be chosen with the
mouse. The Mac OS X menu bar stretches across the top of the screen and is always
visible, except when a slide show, full-screen video, or some other display application

takes over the entire screen. The Apple menu, which drops down when the Apple icon ()
at the top left of the screen is clicked, is always available, even during application and
document modal periods. The Apple menu, shown in Figure 1-13, is controlled by the
operating system, not by any one application or by the user.

Figure 1-13. The Apple menu is always available and is controlled by the operating
system

To the immediate right of the Apple menu is the application menu. The application menu
changes depending on the active application, and it displays the active (or current)
application's name in bold text. By convention, the application menu contains commands
that affect the entire application, such as Preferences, Hide Others, and Quit. The
application menu for the TextEdit application is shown at the left in Figure 1-14.

Figure 1-14. Menu bar for TextEdit (top), with Application, File, Edit, and Window
menus

Each application has its own set of menus, and we've exploded four of TextEdit's six
menus in Figure 1-14. In addition to the application menu, the File and Window menus
should be present for all applications. Edit, Format, and Help menus are common but are
not required by the Apple interface guidelines. Other application-specific menus (e.g., the
Go menu in the Finder) may also be present.

A dark gray disclosure triangle () at the right side of a menu cell is a submenu indicator.

A key combination containing the cloverleaf symbol () - also known as the Command
key - in combination with a character key and possibly modifier keys (e.g., Shift, Option) is
called a keyboard equivalent, or key equivalent, to the mouse. Key equivalents are used in
combination with the Command (Apple, cloverleaf) key (or keys) at the bottom of the
keyboard. Menu commands that bring up dialogs are usually followed by three dots (an
ellipsis), indicating that additional information must be provided to complete the command.
Grayed-out (or dimmed) menu commands are disabled in the application's current context.
Menus and submenus float on top of all other windows and are visible only when the
associated application is active.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.7 The Dock

The Mac OS X Dock replaces the Mac OS 9 Application menu. Always available (though
it may be temporarily hidden), the Dock is designed to reduce on-screen disorder and help
users organize their work. The Dock always contains the Finder icon and the Trash icon in
the first and last positions, respectively, as shown in Figure 1-15. The Dock can also
contain any number of additional icons that fall into four groups: running applications,
minimized documents, file/folder icons, and application icons for commonly used
applications (running or not) such as Mail, iTunes, and Internet Explorer. Every open
application's icon and every minimized document icon (for non-hidden applications) is in
the Dock. The commonly used applications that populate the Dock are the choice of the
user.

Figure 1-15. The Dock (bottom) location and appearance can be controlled via the
Dock submenu

By choosing a menu command from the Dock submenu located in the Apple menu (see the
top of Figure 1-15), a user can turn magnification and hiding on or off. When turned on,
the magnification feature causes each icon in the Dock to enlarge when the mouse is
positioned over it. When turned on, the hidden feature causes the Dock to "hide" off-screen
unless the mouse is positioned over it. Users can also position the Dock as a whole at the
left, right, or bottom of the screen. We prefer the Dock on the left or right side of the screen
because most documents are portrait-shaped, and a Dock at the bottom of the screen gets in
the way.

Users can access additional Dock preferences through the System Preferences application.
We'll experiment with those preferences in the step-by-step exercises later in this chapter.

The example Dock in Figure 1-15 contains 15 icons, 6 of which represent running
applications (indicated by a black triangle below each icon). The first icon on the left is the
Finder, which is always running. The second icon from the left is the running Mac OS X
Mail application, which sports a "live" badge with the number of unread mail messages.
The last three icons on the right are separated from the others by a slight gap with a barely
visible line. This part of the Dock contains minimized document windows and is where the
user can place file and folder icons from the Finder for quick access. The user's Library
folder icon is second from the right, and a minimized TextEdit document is third from the
right. Minimized document icons are actually miniature versions of the windows they
represent - great feedback for the user.

All the icons in the Dock provide a name when the mouse is positioned over them, as with
the iTunes application at the left in Figure 1-16. When the mouse is pressed and held down
on a Dock icon, a menu appears, as shown in the screen shot in the center of Figure 1-16.

Figure 1-16. Mouse positioned over (left) and pressed on (center) the iTunes icon;
mouse pressed on the TextEdit icon (right)

If the Dock icon over which the mouse is pressed and held down represents an inactive
application, the Show In Finder command is the only menu item available. If chosen, this
menu command activates the Finder and selects the application, folder, etc. in the
filesystem. If the application is active (i.e., running) when the mouse is pressed, the
application icon in the Dock will display a special Dock menu containing Show In Finder
and several other useful commands for quick access, as follows:

● At the top of the Dock menu associated with an active application is a list of each
of the application's document windows; selecting one of these menu items brings
the corresponding window to the front of the desktop. For example, the Dock menu
for the running TextEdit application at the right in Figure 1-16 shows Doc 1 and

Doc 2.
● At the bottom of the Dock menu is a menu option labeled Quit. Selecting this

option terminates the application.
● If the application was not in the Dock prior to its being run, the menu option Keep

In Dock will appear as well. Choosing this menu option causes the application's
icon to remain in the Dock after it is terminated.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.8 Controls

Mac OS X controls are on-screen graphical objects that perform like physical control
devices we use every day. Consider a car stereo system that has an on-off switch with an
indicator light, a row of buttons to select a radio station, a sliding knob to set volume, and a
push button for ejecting an audio CD. Each of these devices is a control device with a
different function. The on-off switch is a toggle, the radio buttons allow a choice of one out
of many options, the slider sets a level or value, and the push button causes an action. All
of these physical control devices have analogous on-screen controls that can be
manipulated by the mouse in Mac OS X.

There are several common control types in the Mac OS X user interface, which we will
discuss in the following sections:

● Push buttons
● Radio buttons and checkboxes
● Pop-up menus, command pop-down menus, and combination boxes
● Text fields and scrolling lists
● Sliders and scrollers
● Color wells and image wells
● Disclosure triangles

1.8.1 Buttons

There are several types of on-screen buttons. They fall into two main groups: action
buttons and two-state buttons. An action button performs a single task, such as opening a
dialog, saving a file, copying text, or closing a window. A two-state button sets a single
feature or attribute on or off, such as whether text should be in bold font or a drawer should
be displayed. In the car stereo analogy, the eject button is an action button, while the on-off
switch is a two-state button. The set of car radio buttons is analogous to a matrix (group) of
two-state buttons, each indicating whether the associated radio station is selected. There is
more structure to this matrix of radio buttons, however, because only one of the two-state
buttons may be selected at any one time. A checkbox is another example of a two-state
button.

1.8.1.1 Push buttons

A push button looks like a rounded rectangle with a text label on it. Clicking a push button
performs an immediate action, such as printing a document, canceling a dialog, or
responding to an alert message. Push button names should be verbs (such as Open, Print,
Save, or Cancel) that describe the action to be performed.

Push buttons should not be used to indicate a state such as on or off (use checkboxes
instead). When a push button represents the default action that can be initiated by hitting
the Return key, the button is shown in a darkened form. Push buttons are sometimes
completely round, like the Back button , which was grabbed from a Finder window.

1.8.1.2 Radio buttons and checkboxes

We discuss these two types of buttons together because they are often confused with one
another. Radio buttons should be used for a group of mutually exclusive, but related,
choices. As a group, they have functionality similar to the radio buttons on your car stereo.
A group of radio buttons should contain at least two choices. If you need more than five
choices, consider using a pop-up menu (discussed in the next section).

Checkboxes should be used to indicate options that must be either on or off (toggles). A
checkbox can stand alone if appropriate to the application. Checkboxes in a group are
almost always independent of one another (unlike radio buttons). Checkboxes should be
labeled so that it is clear what actions the checked and unchecked choices will perform. In
contrast to radio buttons, checkboxes usually initiate actions.

1.8.2 Pop-up Menus, Command Pop-down Menus, and Combination Boxes

A pop-up menu is a menu-like list that appears on top of a button when the button is
pressed. Like a set of radio buttons, a pop-up menu displays a list of mutually exclusive
choices - only one can be chosen at a time. Pop-up menus are preferred over radio buttons
when the number of choices is more than five, when the user doesn't need to see the
choices all the time, or when window or dialog real estate is at a premium. Unlike menu
commands, a pop-up menu item should set a state rather than initiate an action.

A pop-up menu has a double-triangle indicator and a label that displays the currently
selected choice, and it "pops up" when the double-indicator triangle is clicked. To select an
item from a pop-up menu, a user must press the pop-up menu button, drag the mouse
pointer to the desired item, and release the mouse button. The chosen item will be
displayed on the pop-up menu button. Pop-up menus are sometimes given numeric
keyboard equivalents (e.g., Command-1). See Figure 1-17 for an example of how a pop-up
menu functions.

Figure 1-17. A pop-up menu before, during, and after a selection

Command pop-down menus are like regular drop-down menus, but they appear in windows
rather than in the menu bar. Command pop-down menus aren't used very often and are
sanctioned for use only in windows that are shared among multiple applications (e.g., the
Font or Color utility window). The label of a command pop-down menu is similar to that of
a regular menu (and unlike that of a pop-up menu) in that it doesn't change.

A combination box is a combination of a text entry field and a pop-up menu or a drop-
down scrolling list. A combination box is useful for displaying a list of common choices
while still allowing the user to type in an item not in the list, sometimes with text
completion, as in the "First" example . Text completion means that a user can quickly select
an item by typing only the first few (unique) characters (this is similar to filename
completion in a Unix shell and web-address completion in a web browser).

1.8.3 Text Fields and Scrolling Lists

There are two types of text fields, input and static. A text input field is a rectangular area of
text that is editable by the user, although it can be disabled in some contexts. The text is
selectable, so the user can drag across it or multiple-click it for subsequent cut, copy, and
paste operations. Some input text fields allow only one short line of text and can restrict
input to certain characters and formats (e.g., uppercase letters only). Text input fields are
often arranged in groups, where the Tab key can move the selection from one text field to
the next. When the user types some text and then hits the Return key, the text field usually
makes something happen; typically, the text is read and some action is performed with it (e.
g., a file is saved under a name typed into a text field in a Save panel). This functionality
makes the text field a control.

A static input field is a rectangular area of text that is not editable by the user but that may
be selectable and may be dimmed in some contexts.

A scrolling list contains as many list items as needed and typically resides inside a
scrolling area in a window or in a pop-down menu (see the next section). Both the list view
and the column view in Finder windows use scrolling lists; another example is the list of
running applications in the Finder's Force Quit Applications utility window.

1.8.4 Sliders and Scrollers

Scrollers let you scroll through a text or graphics area that is larger than the displayed
view. Sliders let you set a value (e.g., floating point, integer) and are often accompanied by
a text field displaying the value. You can grab a scroller or slider knob anywhere to drag it.
You can also click anywhere in a scroller or slider well for larger movements. The center
of the knob will move to the position clicked (this scroller behavior is called "scroll to
here" and can be changed to "jump to the next page" in the General preferences pane in the
System Preferences application).

The size of a scroll knob within the scroller well indicates the relative size of what you see

compared with the total area. For example, in Figure 1-18 the scroll knob fills about 60%
of the scroller well, so we would expect that about 60% of the choices in the scrolling list
are visible (in fact, 8 of 13 choices are visible in Figure 1-18). The position of the scroll
knob indicates the relative location of what's visible within the entire list or document.
Thus, in Figure 1-18, the 8 visible choices are at the top of the list of 13 total choices.
Scrollers usually contain scroll arrows for slow, consistent scrolling through a document.
In some applications you can make the scroller move more quickly by holding down the
Option key when pressing the scroll arrows.

Sliders can be horizontal or vertical and can be discrete or continuous. When they are
discrete, they accept only grid values and should thus have tick marks. There are two
continuous sliders in the window in Figure 1-18.

Figure 1-18. Sliders and a scroller in the System Preferences application

1.8.5 Color Wells and Image Wells

A color well is used to select and manipulate colors. If you press the mouse down inside
the color area of a color well and drag outward, you will drag out a little chip of "color"

that can then be dropped on certain other on-screen objects, such as an image well.
Alternatively, you can click the mouse on the edge of a color well to bring up a Colors
utility window, which can also be used to change the color well's color. The Colors utility
window itself has a color well in its lower-left corner, as shown in Figure 1-19.

Figure 1-19. Colors utility window with a color well (lower left) and eight image wells
(lower center)

An image well serves as a drag-and-drop target for an icon, picture, or color chip (as shown
at the bottom of the Colors window in Figure 1-19). Another example of an image well can
be found in the Desktop pane of the System Preferences window. A set of image wells
would serve well as a set of thumbnails for a photo album.

1.8.6 Disclosure Triangles

Disclosure triangles () are common in menus, the Finder, and many other applications
that display hierarchical information. Clicking a disclosure triangle next to a folder in list
view in a Finder window, for example, will "disclose" the files in the folder.

1.8.7 Other Controls

There are several other types of controls in Mac OS X:

Bevel buttons

These display text, an icon, or a picture and usually replicate the behavior of a push
button.

View-control buttons

The button in the Finder's toolbar is an example of three bevel buttons in a matrix.

Tab controls

These change the view pane of a window (for example, the Alerts and Output tabs
in Figure 1-18).

Placards, progress indicators, and relevance controls

These are less-often-used controls; information about them can be found in the
online reference materials.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.9 The Finder

The Finder is a special application in Mac OS X, because it oversees the Aqua environment
and allows easy access to all other applications. It never stops running while you're logged
in. The Mac OS icon represents the Finder, just as the TextEdit icon represents the
TextEdit application. You can activate the Finder any time you want by clicking this icon
in the Dock - it's always available (it may be invisible, but it's easy to find).

Although the Finder is special, it acts like other applications in most ways. It has a menu,
submenus, windows, utility windows, and so on that can be manipulated just like those
provided in other applications. We begin our in-depth discussion of the Finder with the
Finder window.

1.9.1 The Finder Window

The Finder window is the primary interface that you will use for viewing and manipulating
files in the Mac OS X (Unix) hierarchical filesystem. The Finder window supports three
different views (panes) of files: icon view, list view, and column view. A user can select his
favored view by clicking one of the three mutually exclusive view-control buttons at the
left of the Finder's toolbar. We present the same Finder window showing three different
views of the commonly used /Applications folder in Figure 1-20, Figure 1-21, and
Figure 1-22.

Figure 1-20. Finder's icon view for the /Applications folder

Figure 1-21. Finder's list view for the /Applications folder

Figure 1-22. Finder's column view for the /Applications folder

No matter which view you choose, the Finder window's content area consists of three main
parts: the toolbar, the status bar, and the view pane. The toolbar and status bar can be
hidden via the Finder's View menu, but the view pane is always visible. The Finder status
bar displays the number of items (files and folders) in the selected folder and the space
available on disk. The Finder toolbar contains several types of buttons for viewing and
manipulating files and folders, including the three view-control buttons discussed
previously. Like the Back button on a web browser, the Back button in the Finder toolbar
returns you to the previous view.

1.9.2 The Toolbar

For quick access, file and folder icons can be placed in the toolbar to the right of the view-
control buttons. After being dropped in the toolbar, these icons work like shortcuts

(although that term isn't used). The first icon (Computer) in this area of the toolbar
represents your computer, the second icon (Home) represents your Home folder (~), the
third icon (Favorites) represents your ~/Library/Favorites folder, and the fourth
icon (Applications) represents the system /Applications folder. If you single-click on
any one of these icons, the view will change to the represented folder. You can add a file or
folder icon (e.g., Developer in Figure 1-22) by simply dragging it from the view pane and
dropping it in the toolbar. To remove a file or folder icon-button from the toolbar, drag it
off and drop it on the desktop.

You should use the toolbar mainly to store icons representing folders and document files
that you access frequently. The toolbar can also store file icons representing applications,
but the Dock is usually a better place to do that because there isn't much space in the
toolbar and because the Finder is file-oriented, not application-oriented. A single-click on
any folder icon in the toolbar opens that folder in the browser. A single-click on a
document file icon in the toolbar opens that file in the associated application. A single-click
on an application icon launches that application, as in the Dock. Thus, files, folders, and
applications that you access regularly are only a click away.

You can radically change the contents of the toolbar via the View Customize Toolbar
menu command. We'll revisit this in the step-by-step exercises later in this chapter.

1.9.3 The Menu Structure

As with all Mac OS X applications, the Finder menu structure is hierarchical. When the
Finder is active, the menu bar at the top of the screen displays eight menus: Apple, Finder,
File, Edit, View, Go, Window, and Help. The menu bar and the contents of the seven
Finder menus are shown in Figure 1-23. Most of these menu commands are obvious; we'll
utilize some of the not-so-obvious ones in the step-by-step exercises later in this chapter.

Figure 1-23. The menu bar (top) and the seven Finder menus

To see the contents of a menu, single-click on the menu name in the title bar. The menu
will stay open, or stick (no pressing is required). The submenu displayed will be attached to
the title bar, and you can then choose a menu command by clicking it. Alternatively, you
can press down on a menu title in the menu bar, drag the mouse down to the desired menu
option, and then release the mouse button to select it.

1.9.4 Support Windows and Dialogs

There are several useful Finder utility windows and dialogs that can be displayed via menu
commands. Perhaps the most useful is the modeless Info dialog, which shows up when the
user chooses File Show Info and provides detailed information about individual files
and folders. The Edit Show Clipboard menu command brings up the Clipboard,
which displays the cut or copied contents currently available for pasting. The Finder's
Clipboard, Preferences, and About windows are all modeless and will stick around while
you work elsewhere in the Finder. The Go Go to Folder menu command brings up the
Go to Folder dialog, a document modal sheet attached to the main Finder window (a
Finder's view is considered a document in a window). These windows will be discussed
later in this chapter.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.10 Configuring Your Desktop, Step by Step

This section takes you on a guided tour of the Mac OS X Finder and System Preferences
applications. We assume that you have the Mac OS X Developer Tools installed. All of the
steps work under Mac OS X Version 10.1.

To get the most out of these exercises, we recommend that you follow them precisely. For
example, start by logging in and do not close any windows or dialogs unless instructed to
do so. If you do not follow a step precisely or if you skip a step, subsequent steps may not
make sense.

The steps in configuring your desktop are as follows. As with all step-by-step exercises in
this book, we recommend that you follow these steps precisely.

1. Start up your computer and log in.

The Finder will be running, and the Finder menu will appear in the menu bar at the
top of the screen. A Finder window will appear in the center of the screen, and the
Dock will be at the bottom of the screen (unless you've closed it or previously
changed its position, in which case you should choose Finder New Finder
Window).

Note the black triangle below the Mac OS Finder icon. This triangle indicates that
the Finder is running. If your Dock is on the side of your screen, the triangle will be
on the side of the icon, rather than below it.

2. Move your Finder window around the desktop by dragging its title bar. Any
window can be moved in this way.

Note that you cannot drag a window above the menu bar, but you can drag it
partially off-screen to the left or right or at the bottom. Note also that the window
goes "under" the Dock but is only partially obscured.

3. Resize your Finder window by dragging the resize control in the lower-right corner.

4. Click the green zoom button at the top left of the window. Note that the window
changes size (perhaps to fill the working area). Click the zoom button again to
restore the previous size.

Windows have an initial size and position that are set by the application and are
called the standard state. If a user resizes or moves a window, the window is in the

user state. The zoom button simply toggles between the standard and user states.
Each of the three views in the Finder has its own standard state.

5. Make sure you are viewing files in your Finder window in column-view mode by
clicking the column-view button in the Finder's toolbar.

1.10.1 Working with the Dock

6. Remove all of the icons from your Dock (except for the Mac OS and Trash icons,
which cannot be removed) by dragging them from the Dock and dropping them
onto the desktop (background). Each icon will disappear in a cloud of dust.

If any applications are running, you must quit them before you can drag them out of
your Dock. Running applications are those that have a small triangle below the icon
in the Dock. To quit a running application, press and hold down the mouse on its
icon in the Dock, and choose Quit from the menu that pops up.

7. Select (i.e., single-click) the hard disk icon labeled Macintosh HD in the Finder
window. This represents the top (root) of the filesystem hierarchy for the Mac OS
X filesystem.

8. Now select the /Applications folder (directory) in the Finder by clicking its
icon. The /Applications folder should have an A-like picture (made up of a
pencil, pen, and ruler) on it.

9. Add the Mail application to your Dock by selecting it in the Finder, dragging its
icon from your icon path, and dropping it just below the Mac OS icon in your
Dock.

10. Use the same procedure to add the TextEdit application to your Dock.

11. Open the Utilities folder by selecting the folder icon at the bottom of the
column that holds the list of applications. This folder contains applications that are
useful for power users but that are not normally needed by beginners. (If you aren't
already a power user, you need to become one!)

12. Add the Terminal and Console applications to your Dock, as you did with Mail and
TextEdit. Only one application can be dropped into the Dock at a time.

13. Open the /Developer/Examples/AppKit folder in your Finder by selecting
Developer (from the second Finder column), then Examples, and finally AppKit.

14. Drag the AppKit folder icon to the "end" of the Dock, near the Trash icon. Folders
and file icons can be placed only in the part of the Dock between the Trash icon

and the faint line.

15. Now remove the AppKit folder icon from the Dock by dragging it out to the
desktop and releasing it. The Finder toolbar is a better location for folders.

The AppKit folder contains good examples of Cocoa applications that show off
different aspects of the Foundation and Application Kits, the two fundamental
frameworks of the Cocoa development environment. (When you are finished with
this book, you should go through the examples in this folder, build each with
Project Builder, run them, and then look at the code to see how they work.)

1.10.2 The Finder's Viewing Options

16. Open your Home folder again by clicking the little house icon in the Finder
window's toolbar.

17. Choose View Show View Options to bring up the View Options utility
window. If necessary, drag this utility window so that it doesn't share screen space
with the Finder window. If you are still in column-view mode, no options will
currently be shown in the View Options window.

18. Experiment with the three different ways of displaying files (icon view, list view,
and column view) by clicking the three different view-control buttons) in your
Finder's toolbar. (These views were covered earlier, in Section 1.9.) Note that the
View Options window changes to show the options for the selected Finder view, as
shown in Figure 1-24.

Figure 1-24. The View Options utility window for column, icon, and list views

19. Choose the Finder's View as List menu command. Note that you are provided
with more information about the files in the list view than in the other views.

20. Click the Name column header, and note that the files are ordered alphabetically by
name. Click the Name column header again, and note that the order is reversed.

21. Click the Date Modified, Size, and Kind column headers, an1978 d note that while
in list view you have many ordering options for the files in a folder. You can also
add more columns with similar functionality, as indicated in Figure 1-24.

22. Choose the Finder's View as Columns menu command, an alternative way of
selecting the column view (the view-control buttons are quicker).

23. Open another Finder window by choosing the File New Finder Window menu
command. The new window will probably open with the root Computer folder
displayed in the view pane, but it might open with your Home folder displayed.
This is a user preference that can be selected in the Finder Preferences window.

24. Click in one Finder window and then in the other (this is known as click-to-focus
[4]).

Note how each window is displayed "on top of" the other after it is clicked (using
the desktop analogy, where windows are pieces of paper). Note also that the title of
the window in front is displayed in black instead of gray and that the window-
control buttons are colored red, yellow, and green instead of gray.

25. Minimize (iconify) one of the Finder windows by clicking the yellow minimize
button in the window's title bar.

The window will animate into a minimized Finder icon in the Dock with either the
Genie effect or the Scale effect. The animation effect is a user preference and can
be changed in the System Preferences application. The mini-window icon in the
Dock should resemble the full-sized window.

26. Open your Home folder by selecting (with a single-click) the little house icon in the
still-open Finder window's toolbar.

1.10.3 Finder Preferences

Many Mac OS X applications allow the user to set preferences that change the way the
application behaves. Your preferences are stored in your ~/Library/Preferences
folder. If different people use the same computer with different login accounts, each person
will have her own set of system- and application-specific preferences. In the following

steps, we will look at the Finder's preferences.

27. Choose the Finder Preferences menu command. The Finder Preferences
dialog should appear, as shown in Figure 1-25 (your preferences may differ).

Figure 1-25. Finder Preferences dialog

28. Click the "Hard disks" checkbox, and the icon(s) representing your computer's hard
disk(s) will appear on the desktop (the icon(s) might be hidden behind a window).
Uncheck the checkbox (i.e., click it again), and the hard disk icon(s) will disappear.

29. Click the "Always show file extensions" checkbox and look in a Finder window.
File extensions will appear after the names of the files that have them.

30. Click the red close button to close the Finder Preferences dialog.

31. Now click the button in the upper-right corner of the Finder window. Note that the
toolbar disappears.

32. Click the button in the upper-right corner of the Finder window again. The button is
a toggle, so the toolbar will return.

Use this button to hide the toolbar quickly when you need more space in the view
pane. Note that you can also hide the status bar that lies between the toolbar and the
view pane by choosing View Hide Status Bar.

33. Choose the Finder's View Customize Toolbar menu command to change the
Finder view pane into a cornucopia of useful icons and tools that can be dragged to
your toolbar for quick access, as shown in Figure 1-26. Note that the window in
Figure 1-26 has the default set of icons in its toolbar.

Figure 1-26. For quick access, drag icons from the View pane into the toolbar

34. Click the Done button. (You can customize your toolbar later, when you have a feel
for Aqua. We prefer the default set as a starting point.)

1.10.4 System Preferences

The Finder preferences affect only the Finder. Many Mac OS X preferences affect your
entire operating-system environment. These preferences can be modified using the System
Preferences application. This application replaces the Control Panels system used in
previous versions of Mac OS (and it's similar to the Microsoft Windows Control Panel).

35. Choose System Preferences from the Apple menu to launch the System Preferences
application, as shown in Figure 1-27.

Figure 1-27. System Preferences main window

36. If your System Preferences window doesn't look like the one in Figure 1-27, click
the Show All icon-button in the toolbar (the row of icons just below the title bar).

37. Click the General icon-button in the Personal row in the System Preferences
window. Note that the new preferences pane (view) that shows up (see Figure 1-28)
is slightly smaller than the previous one, and the window shrinks accordingly.

Figure 1-28. The General pane in the System Preferences application

38. Press the Highlight color pop-up menu button, drag to Graphite, then release the
mouse button. (Change it back if you prefer.)

39. Click the radio button labeled "At top and bottom" in the "Place scroll arrows"
section of the General System Preferences pane.

40. Now click the Finder icon in your Dock to make the Finder active. Note that the
highlight color is Graphite (or whatever you chose for a highlight color) and the
"up" scroll arrow is at the top of the scroller instead of the bottom.

41. Choose Finder Hide Finder (or type Command-H) to hide the Finder. The
System Preferences application should become active, because it was the active
application before the Finder was made active.

42. Click the radio button labeled "Together" in the "Place scroll arrows" section of the
General System Preferences pane.

We recommend keeping both scroll arrows together because this makes it easier to
switch from scrolling up to scrolling down. In fact, you can switch the scrolling
direction while pressing the mouse button by simply sliding from one scroll arrow
to the other.

43. Now single-click the Apple icon in the menu bar, then position the mouse over the

Recent Items.

Note that there is a list of recently launched applications and another list of recently
opened documents in the menu. This is a very useful menu that defaults to lists of
length 5. We'll change the lengths to 10 in the next step.

44. Back in the System Preferences application, press the "Number of recent items:
Applications" pop-up menu button, drag to 10, then release the mouse button. Do
the same for the number of recent documents.

45. Click the Show All icon-button in the System Preferences toolbar.

46. Click the Dock icon-button in the Personal row in the System Preferences window
to get the pane shown in Figure 1-29.

Figure 1-29. The Dock pane in the System Preferences application

47. Click the "Right" radio button to position your Dock at the right of your screen.
Note that you can also have your Dock hide automatically and change the
animation effects applied to applications as they open. When turned on, the
Magnification feature will cause icons in your Dock to enlarge when the mouse is
positioned over them, a wonderful feature if you have lots of icons in your Dock or
if your vision is poor. Some of these preferences are available via the Apple menu.

48. Click the Show All icon-button again and then click the Screen Saver icon-button

in the System Preferences toolbar. Note that you can choose from a variety of
screen savers, specify the number of inactivity minutes before your chosen screen
saver takes effect, and also choose corners where you want to position the mouse to
force the screen saver to take effect.

49. Click the Show All icon-button once again, then click the Sound icon-button in the
System Preferences toolbar (see Figure 1-18 for a screen shot of the Sound pane).
Note that you can choose from a variety of sounds for system alerts and specify the
volume.

50. Click the Show All icon-button one last time, then click the Software Update icon-
button in the System Preferences toolbar. We recommend that you visit this pane
regularly and click the Update Now button to download updates from Apple's web
site. Or, you can click the "Update Software Automatically" radio button and select
"Check for updates Daily" (or Weekly), so you won't have to remember to update
your software.

51. Choose System Prefs Quit System Prefs to quit the System Preferences
application.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.11 Menu Guidelines and Keyboard Equivalents

Developers should follow Aqua's menu guidelines carefully so users of their applications
can learn and work faster. Common menu structure and commands are crucial to better
user productivity within a GUI. In this section, we discuss most of the standard Mac OS X
menus and associated keyboard equivalent guidelines. For further details, see the
"Introduction to the Aqua Human Interface Guidelines" at Apple's developer web site or in
the /Developer folder (references are provided at the end of this chapter).

A keyboard equivalent is a way of manipulating a graphical object (usually a menu) using
the keyboard rather than the mouse. To use a keyboard equivalent, type a single key
(perhaps modified by the Shift key) while pressing one of the Command keys near the
bottom of the Apple keyboard (depending on your Mac, you may have only one Command
key on your keyboard). Experienced users use keyboard equivalents because they are faster
than manipulating the mouse. Using the mouse is a more natural way to manipulate
graphical objects, but it's often slower and less convenient, either because the user's hands
are already on the keyboard or because mouse (cursor) movements across a screen are time-
consuming and clumsy.

A keyboard equivalent usually substitutes for a click on a menu command from the menu
bar, but it may also substitute for a pop-up menu command. Pop-up menu key equivalents
should be digits (e.g., Command-2 activates the second item down from the top of a pop-up
menu, as shown in Figure 1-30).

Figure 1-30. Command-2 activates the second item of this fictional pop-up menu

Because most keyboard equivalents are common across applications, a user will need to
learn only a few of them to work considerably faster. The most common and useful
keyboard equivalents are listed in the tables in the following sections. Others can be seen in
the screen shots of the menus themselves. Note that the keyboard equivalent labels on Mac
OS X menus are displayed in capital letters, but you must actually use lowercase letters to
make the commands work (unless the label contains the shift icon - for example, File
Save As).

1.11.1 Application Menu

Every application has an application menu, the menu to the immediate right of the Apple
menu. Figure 1-31 contains a screen shot of the application menu for a generic application
template. Application menus contain commands that affect the entire application, including
the following: display the About window, display the Preferences dialog (if any), Hide the
application, Hide Others (i.e., all other applications), Show All (applications), and Quit.
We'll discuss the Services submenu later.

Figure 1-31. Generic Application menu and menu bar for a Mac OS X application

The standard key equivalents for Application menu commands are listed in Table 1-1.

Table 1-1. Standard key equivalents for Application menu commands

Keyboard equivalent Command

Command-H Hide

Command-Q Quit

The menus (File, Edit, etc.) to the right of the application menu in the menu bar are
application-dependent, but if included they should be placed in the order shown in Figure 1-
31. If additional menus such as View, Format, and Tools are included, they should be
inserted between the Edit and Window menus. Mac OS X users are accustomed to finding
the File, Edit, Window, Help, and other menus in the same place for every application, so
don't frustrate them by moving the menus around when designing your application.

A command from a submenu is sometimes promoted up a level to the main menu if it's

essential to the application. For example, the Font command might be promoted from the
Format submenu to the main menu in a word processor or other font-dependent
application. If this decision is made, the promoted command should immediately follow
the submenu where it would normally be found. Thus, a promoted Font command, for
example, would follow Format in the main menu.

1.11.2 File Menu

The File menu contains commands that affect a document (or file) as a whole. These
commands are used to open, create, or save the type of document(s) associated with the
application. As with the application menu, not all of the commands in the File menu are
required, but if included they should be ordered as shown in Figure 1-32.

Figure 1-32. Generic File and Edit menus

The Save and Save As commands will both save the contents of the main document
window to a file, but Save As allows you to save the file to a name that is different from
the current name. The standard key equivalents for the File menu are listed in Table 1-2.
Note that the Save As and Page Setup key equivalents are three-key combinations requiring
the Shift key.

Table 1-2. Standard key equivalents for File menu commands

Keyboard equivalent Command

Command-N New

Command-O Open

Command-W Close

Command-S Save

Shift-Command-S Save As

Shift-Command-P Page Setup

Command-P Print

1.11.3 Edit Menu

The Edit menu commands can be used to manipulate text, graphics, and other objects in the
key window (i.e., the one with keyboard focus). Edit menu keyboard equivalents - listed in
Table 1-3 - are perhaps the most worthwhile to learn, because they are used very often and
in a variety of places. The Cut, Copy, Paste, and Select All commands can be used in most
text and graphics areas in any main window or dialog that is key. Edit menu key
equivalents are very convenient for right-handed people, because they can be performed
easily with the left hand while one's right hand is on the mouse.

Table 1-3. Standard key equivalents for Edit menu commands

Keyboard equivalent Command

Command-X Cut

Command-C Copy

Command-V Paste

Command-A Select All

Command-Z Undo

1.11.4 Find Submenu

The Find submenu shown in Figure 1-33 allows easy access to common activities such as
finding a character string and finding the next or previous appearance of the same string.
The common key equivalent Command-F brings up the Find dialog (window) for specific
searches.

Figure 1-33. Find submenu and Find dialog

The Use Selection for Find command finds the next string that matches the current
selection. The standard key equivalents for the Find menu are listed in Table 1-4.

Table 1-4. Standard key equivalents for Find submenu commands

Keyboard equivalent Command

Command-F Find, Find Panel

Command-G Find Next

Command-D Find Previous

Command-E Use Selection for Find

Command-J Jump to Selection

1.11.5 Format and Font Menus

Format menu commands affect the layout of text and graphics documents. The Format
menu is not available in every application, but it is usually found in applications that deal
with text, such as TextEdit. The Font submenu is usually a choice in the Format menu (as
in the TextEdit menu shown in Figure 1-34), but it can be promoted to the main menu, as
described previously. There are no standard keyboard equivalents for the Format menu, but
there are many for the Font submenu (the Format key equivalents in Figure 1-34 are
specific to TextEdit).

Figure 1-34. The Font submenu and Font utility window in TextEdit

Font submenu commands such as Bold and Italic affect one aspect of the text font. There
are several other common Font submenu commands that affect font size and style, some of
which are shown in Figure 1-34. The Font Panel command brings up a standard Font utility
window with font family, typeface, and size choices, as shown in Figure 1-34. The
standard key equivalents for the Font menu are shown in Table 1-5.

Table 1-5. Standard key equivalents for Font submenu commands

Keyboard equivalent Command

Command-T Font Panel

Command-B Bold

Command-I Italic

Command-U Underline

1.11.6 Window Menu

Window menu commands such as those in Figure 1-35 apply to windows within the active
application. The Close, Zoom, and Minimize Window commands apply only to the key
window. (Close Window is usually in the File menu, with the Command-W key equivalent,
but it can also be placed in the Window menu.) The Bring All to Front command brings all
the windows in the active application to the front of the desktop. The Doc 1 command
brings the Doc 1 document window to the front and makes it the key window (the Doc 2
menu command works similarly). The dot next to Doc 1 in Figure 1-35 indicates that it has
not been saved to disk (same meaning as the dot in a document window's red close button).
These two menu commands that affect document windows were added to the Window
menu dynamically, as the corresponding documents (files) were opened.

Figure 1-35. The Window menu in TextEdit

The standard key equivalents for the Window menu commands are shown in Table 1-6.

Table 1-6. Standard key equivalents for Window menu commands

Keyboard equivalent Command

Command-M Minimize Window

Command-W Close Window

1.11.7 Services Submenu

The Services submenu commands like those in Figure 1-36 allow for communication
between different applications. Most services take the selected text or object in the key
window and perform some sort of function with it. For example, if you select some text in
TextEdit and then choose Services Mail Mail Text, the text will be sent to the
Mac OS X Mail application, which will place it in a Compose window that opens
automatically. Likewise, you can choose Services Mail Make Sticky to turn the
selected text into a "sticky note" on your screen (launch the Stickies application in the /
Applications folder to find out about stickies).

Figure 1-36. Using the Mail Text command under the Services submenu to email the
selected text

Services such as these enable applications to interoperate with each other without any prior

arrangement on the part of the programmer or the user. Unique to Mac OS X, services are
an extremely powerful aspect of the operating environment that result from the dynamic
binding of the Objective-C language. We'll learn how to create an application that provides
services functionality in Chapter 20.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.12 Working with the Filesystem,Step by Step

The Mac OS X Finder is primarily used for managing files stored on your computer's hard
and floppy disks, and over the network. This section discusses many of the Finder's
operations and menu commands for managing files and folders.

1. Log into your account on a computer running Mac OS X. Make sure that the Finder
is the active application and that only one of its windows is open.

2. Open your Home folder (directory) by selecting (with a single-click) the Home icon
toward the center of the toolbar in the Finder window.

3. Switch to icon view in the Finder.

1.12.1 Working with Folders

4. Create a new folder in your Home folder by choosing File New Folder from
the menu bar. The new folder will be named "untitled folder".

5. Make sure the text "untitled folder" is selected (in your highlight color). If it isn't,
double-click the text "untitled folder" to select it.

6. Rename the new folder stuff by entering "stuff" on the keyboard.

7. Make your stuff folder easily accessible by dragging its icon from your Finder
view pane and dropping it on your Finder toolbar (widen the Finder window if
necessary). Whenever you need to access the stuff folder, all you need to do is
click its icon in the Finder toolbar.

8. Switch to column view in the Finder.

9. Open the /System/Library/Sounds folder in the Finder window by:

a. Clicking the Computer icon in the Finder's toolbar

b. Clicking the Macintosh HD icon (or wherever your Mac OS X operating
system is located)

c. Clicking the System folder, then the Library folder, and finally the
Sounds folder (you'll probably have to scroll down to see it)

Traversing through the filesystem this way is easiest in column-view mode. Icon-
view mode requires double-clicks, and the folders are more difficult to find.
However, there's an even easier way to get to the Sounds folder, as we'll see next.

10. Choose Finder's Go Go to Folder menu command, and note that a sheet drops
down from the active Finder window (see Figure 1-37).

Figure 1-37. The Go to Folder sheet in the Finder

11. Type in "/Sys" in the Go to Folder sheet, and the Finder will complete the folder
name to "System" for you. Hit the Tab key to accept the completion.

12. Finish typing the path /System/Library/Sounds (with tabs), as shown in
Figure 1-37, then click the Go button. This is a quick way to access a folder for
which you know the path but that you don't have in your toolbar.

The case-sensitivity of filenames depends on the kind of disk volume on which your file
resides. Most Mac OS X computer disks are formatted with Apple's HFS+ filesystem. With
HFS+, the case of filenames is preserved but ignored. This means that you cannot have
files named "apple" and "Apple" in the same folder. On the other hand, if your disks are
formatted with the Unix filesystem, filenames are case-sensitive - an uppercase "A" is a
different character from a lowercase "a" - so files named "apple" and "Apple" can appear in
the same folder. This can be confusing!

1.12.2 Working with Files

13. Select the Glass.aiff file by clicking the filename Glass.aiff in the
Sounds folder in the Finder.

14. Click the arrow in the right column to play the "glass" sound (see Figure 1-38).

Figure 1-38. Sounds folder in column view in the Finder

15. Switch to icon view in the Finder.

16. Press down on the Glass.aiff icon and drag it so it's on top of the stuff
folder icon in your Finder toolbar. Don't release the mouse button yet.

Note that the cursor changes to the standard arrow-with-plus-sign cursor, indicating
that a copy operation is about to take place.

17. Now drop the Glass.aiff icon on top of the stuff folder icon (i.e., release the
mouse button). The file will be copied into the stuff folder.

18. Again drag the Glass.aiff icon from the icon path and drop it on top of the
stuff folder icon in the Finder toolbar. A Finder alert labeled "Copy" pops up to
warn you that the file Glass.aiff already exists in your stuff folder, as
shown in Figure 1-39.

Figure 1-39. Finder alert warning that a copy command may replace an existing file

19. Stop the copy operation by clicking the Stop button on the Copy alert.

20. Double-click the Glass.aiff icon. The QuickTime Player application in the /
Applications folder will automatically launch (because the player is associated
with .aiff files).

21. Play the sound by clicking the big circular Play button in the center of the
application.

22. Quit the active QuickTime Player by choosing QuickTime Player Quit
QuickTime Player. Note that the previously active application, the Finder,
automatically becomes active.

1.12.3 Forcing an Application to Quit

23. Discover which applications are running by selecting Force Quit from the Apple
menu. The currently running applications will be listed in the Force Quit
Applications utility window, as shown in Figure 1-40.

Figure 1-40. The Force Quit Applications utility window

The Force Quit button provides a simple way to quit applications that are hung
(unable to continue processing). If an application is hung, select it from the list of
running applications in the Force Quit Applications window and then click the
Force Quit button. Do not use this method to quit an application unless it is hung.

This feature of Mac OS X is made possible by the protected memory architecture
provided by Darwin/Unix that allocates a unique memory space for each
application. We recommend that you remember the key equivalent, Command-
Option-Escape, that brings up the Force Quit Applications window without using
the mouse (which might be temporarily out of service).

24. Click the red close button at the top left of the Force Quit Applications window.

25. Still in icon view, open your Home folder again by clicking the Home icon in the
Finder's toolbar.

26. Create another new folder called junk in your Home folder by typing Shift-
Command-N (the key equivalent of choosing the File New Folder menu
command) and renaming the untitled folder. (To type Shift-Command-N, hold
down one Shift and one Command key simultaneously while typing the N key.)

27. Make your junk folder easily accessible by dragging its icon from your icon view
pane and dropping it in your Finder toolbar.

28. Open the stuff folder by clicking its icon on your Finder toolbar.

1.12.4 Moving and Copying Files

29. Select the file Glass.aiff in your browser (use a single-click).

30. Make a copy of the Glass.aiff file in the stuff folder by choosing File
Duplicate from the Finder's menu (or typing Command-D).

A new file named Glass copy.aiff, which is a copy of the Glass.aiff file,
will appear in your stuff folder. Your Finder window should look like the one in
Figure 1-41.

Figure 1-41. Glass.aiff and a duplicate copy of it in the stuff folder

31. Without releasing the mouse button, drag the Glass.aiff icon so it's on top of
the junk folder icon on your Finder toolbar.

The plus-sign cursor does not appear this time; instead, the cursor remains an
arrow. The arrow indicates that the file Glass.aiff will be moved to the junk
folder, not copied.

32. Release the mouse button and check the contents of the stuff and junk folders.
Note that the Glass.aiff file appears only in the junk folder.

If you are the owner of both folders and they reside on the same physical disk, the
default behavior for drag-and-drop operations is to move files, not copy them. This
behavior also applies when you drag and drop multiple files or folders.

33. Open the junk folder by clicking its icon in the Finder toolbar.

34. Select the Glass.aiff file in your browser.

35. Without releasing the mouse button, drag the Glass.aiff icon and let it hover
over each of the icons (Computer, Home, etc.) in your Finder toolbar.

Note that some of the icons in the toolbar highlight, indicating that they will accept
the Glass.aiff file. The Computer icon will not accept it (unless you are logged
in as superuser). Note that the cursor changes to the arrow-plus-link cursor over the
Favorites icon (because Favorites stores only aliases to files, not the files
themselves).

36. Keeping the mouse button pressed, drag the Glass.aiff icon on top of the
stuff folder icon on your Finder toolbar and press the Option key. Note that the
plus-sign cursor appears. Release the mouse button while pressing the Option key,
and note that the Glass.aiff file is copied into the stuff folder.

You have forced a copy by using the Option key.

1.12.5 Moving Without Activating

37. Type Command-N twice to make two more Finder windows appear.

38. Holding down a Command key, press on the title bar of one of the windows that is
in the background and drag the window to a new location. Release the mouse and
Command key.

Notice that you can move this window around the desktop without bringing it to the
front. If the window belonged to another application, the Command key would
allow you to move the window without activating that application. This technique
can be useful for clearing your work area or finding windows.

39. Close the two new Finder windows.

1.12.6 Getting Information About Files

40. Select the stuff folder icon in your Finder toolbar to open that folder.

41. Select the Glass.aiff file.

42. Choose File Show Info (or type Command-I) to display the Glass.aiff
Info dialog, as shown on the left side of Figure 1-42).

The General Information pane displays general information about the file or folder that is
currently selected in the Finder. For a file, this includes the kind of file that is selected and
its size. For folders, the Info dialog displays the total size of all of the items in that folder.
If you click the Locked switch for a file, no changes to the file will be permitted (although
the file may still be moved to another location). If you click the "Stationery Pad" checkbox,
when the file is opened, a new, untitled copy of the original is opened. This is useful for

storing file templates.

Figure 1-42. The General Information and Name & Extension panes of the Info dialog

43. Choose Name & Extension from the pop-up menu in the Info dialog (see the right
side of Figure 1-42). This pane shows the true name of the file as it is stored in the
filesystem (later try looking at an application file, and you'll see the .app
extension). You can also control whether the extension for this file will be
displayed (e.g., Glass.aiff will become simply Glass).

44. Choose "Open with application" from the pop-up menu in the Glass.aiff Info
dialog (see the left side of Figure 1-43). This Info dialog pane shows which
applications may be associated with the Glass.aiff sound file.

Figure 1-43. The Open with application pane of the Info dialog

45. Press the bevel button with the QuickTime icon on it to see a pop-up menu (see the
screen shot on the right of Figure 1-43).

46. Drag to iTunes and release the mouse button.

47. Double-click Glass.aiff in the Finder, and iTunes will open and play the
"glass" sound.

48. Choose iTunes Quit iTunes.

Note that AIFF files can be opened with either QuickTime Player or iTunes. Mac OS X
applications contain information about what kinds of files they can open; the Finder reads
this information and displays the results in the Info dialog's "Open with application" pane.

49. Press the bevel button in the Finder's Info dialog again and drag to QuickTime
Player. iTunes is not the best application to associate with simple sounds.

50. Choose Preview from the pop-up menu in the Glass.aiff Info dialog (see the
left side of Figure 1-44). The Preview pane allows you to see the contents of some
files without actually launching an application program. The Finder knows how to
preview sound, graphics, and some plain-text files, but not many others. In this
case, you can preview an AIFF sound.

Figure 1-44. The Preview and Privileges panes of the Info dialog

51. Finally, choose Privileges from the pop-up menu in the Glass.aiff Info dialog
(see the right side of Figure 1-44).

The Privileges pane allows you to control the security of the file. Each file has a
specific owner and a group to which it belongs (these are Unix concepts). If you are
the owner of the file, you can change its privileges.

52. Change the Owner privilege from "Read & Write" to "Read only" via the Owner
pop-up menu. The file Glass.aiff will then be read-only for you, the owner.
Consequently, you won't be able to delete it, but let's try anyway.

53. Drag the Glass.aiff file icon from your stuff folder and drop it on the Trash
icon in the Dock. You'll get the alert shown in Figure 1-45. Click OK.

Figure 1-45. Alert indicating that a read-only file cannot be deleted

1.12.7 Filling and Emptying the Trash

54. Change the Owner privilege of Glass.aiff from "Read only" back to "Read &
Write" via the Owner pop-up menu (i.e., reverse Step 52).

55. Still in icon view in the Finder, click the Home icon and then select the stuff
folder.

56. Hold down the Command key and select the junk folder. Note that both folders
are now selected.

57. Drag either of the two selected folders to the Trash, and both will be moved. Notice
that the folders are still in your Finder toolbar (we wish that Apple would remove
icons from the toolbar when they are trashed).

58. Drag the stuff and junk folders off the toolbar into the desktop.

59. Double-click on the Trash icon to display the contents of the Trash window, as
shown in Figure 1-46. Note that the Trash window is a special type of Finder
window that does not allow viewing of parts of the filesystem other than the
Trash folder.

Figure 1-46. The Trash window

60. Choose the Finder Empty Trash menu command. You will be prompted to see
if you are sure that you wish to remove the folders, as shown in Figure 1-47.

Figure 1-47. The Finder wants to know if you really want to dump your trash

61. Click OK.

Congratulations for making it all the way through!

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.13 Summary

Although there is more to learn about using Mac OS X, this introduction is probably
enough to get you started and feeling comfortable with the interface. Keep the user
guidelines you learned in this chapter in mind when designing application interfaces - your
users will thank you for it. You might also want to bookmark the references shown at the
end of this chapter.

In the next chapter, we'll learn how to work with some of the most important Cocoa
developer tools. Then, in Chapter 3, we'll create our first program.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.14 Exercises

1. Go through Section 1.10. Make a list of the things you discovered while working
through the steps.

2. Open document windows, utility windows, and dialogs in the TextEdit application
to convince yourself that the window order we discussed in this chapter is accurate.

3. Open two viewer windows, utility windows, and dialogs in the Mail application to
convince yourself that the window order we discussed in this chapter is accurate.
Note how the Colors and Font utility windows are the same from application to
application.

4. Look at the Services menu for several Mac OS X applications, including the
Finder, Mail, TextEdit, and your web browser. Determine why services are
included for some applications but not others. Also determine the context in which
services items are dimmed and unavailable for these same applications.

5. See how many violations of Aqua user interface guidelines you can find in the
bundled applications in the /Applications folder. Look for naming, menu
placement, key equivalents, and window-order violations. Use the references in the
next section.

6. Go through Section 1.12. Make a list of the things you discovered while working
through the steps.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 1. Understanding theAqua Interface

1.15 References

Many of these references are installed on your computer when you install the developer
tools; they're also on Apple's web site (http://developer.apple.com). The advantage of using
the pages on your computer is that they should match whatever version of Cocoa you are
using, whereas the version on the Apple web site will match Apple's most recent version of
Cocoa. However, we prefer the version on Apple's web site, as those pages seem easier to
use and frequently have more complete descriptions of Cocoa concepts.

1. Cocoa developer documentation:

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

2. Mac OS X terminology guidelines:

http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/
AppBTerms/index.html

3. Introduction to the Aqua Human Interface Guidelines:

http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/
AHGIntro/index.html

4. User interface elements:

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/Misc/UIElementsPage.html

http://developer.apple.com/
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AppBTerms/index.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AppBTerms/index.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHGIntro/index.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AHGIntro/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/UIElementsPage.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/UIElementsPage.html

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part I: Cocoa Overview

Chapter 2. Tools for Developing Cocoa Applications

There are several applications bundled with Mac OS X that are very useful for writing
Cocoa programs. Most of these tools reside in the /Developer/Applications
folder, but some reside in the more user-oriented /Applications/Utilities folder.
We'll discuss the most helpful of these tools in this chapter.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.1 Developer Tools

The two most important Mac OS X developer tools by far are Project Builder (PB) and
Interface Builder (IB). These tools reside in the /Developer/Applications folder,
shown in Figure 2-1.

Figure 2-1. The developer applications bundled with the Mac OS X developer system

The third application you'll need to learn as a Cocoa developer is the gdb debugger. We'll
discuss gdb and how it's used at the Unix command line and with PB toward the end of
this chapter. We'll also take a quick look at the ObjectAlloc, PropertyListEditor,
IconComposer, icns Browser, Console, ProcessViewer, and Terminal applications.

2.1.1 Project Builder

Project Builder is Cocoa's integrated development environment (IDE), used to manage

application development projects. For each application, developers will use PB to create a
skeletal application framework, organize the application's resources, edit the Objective-C
source code files, run the compiler and the rest of the build process, control the debugger,
add application and document icons, and set up other application features. PB does a lot for
developers - it's a wonderful tool!

The PB menu bar and main window for an under-construction application called Calculator
are shown in Figure 2-2. The buttons on the left of the toolbar are for building (compiling),
cleaning, running, and debugging applications. The pop-up menu that currently displays
"Calculator" is for switching build targets, whereas the buttons on the right of the toolbar
are for stepping through an application being debugged. The Groups & Files pane at the
left of the window in Figure 2-2 shows the files that make up the project, including the
Classes files where you add your application-specific code. The top-right pane shows the
output from a compilation process, and the bottom-right pane shows a file (Controller.
h) being edited. We'll discuss all of these PB features in great detail as we build
applications throughout this book. We'll show you how to open a project in PB and also
how to use the gdb debugger in PB later in this chapter.

Figure 2-2. Using PB to build and manage the Calculator application

2.1.2 Interface Builder

Interface Builder is used to create application interfaces (e.g., menus, windows, buttons)
and make connections between interface objects. It is also used to connect interface objects
to Objective-C data structures called objects.

The IB menu bar and the interface for an under-construction application called Calculator
in IB are shown in Figure 2-3. Both the small MainMenu menu bar below IB's menu bar
and the window titled "Calculator" on the left are part of the interface for the Calculator
application being built. The window on the right (Cocoa-Views) shows a palette of user-
interface objects (e.g., Button, Switch) that can be dragged and dropped into an interface
window. The button and text field objects inside the Calculator window were taken from
this palette and then modified. The buttons in the toolbar at the top of the Cocoa-Views
palette allow developers to access a great variety of user-interface objects for building
application interfaces.

Figure 2-3. Using IB to build the interface for the Calculator application

In Figure 2-4, our second IB screen shot, the window at the lower left displays icons
representing some of the (instance) objects that are part of the Calculator project. For
example, the icon labeled "Window" represents the Calculator window, and the icon
labeled "MainMenu" represents the Calculator's menu. The icon labeled "Controller"
represents an Objective-C object that has no associated on-screen object such as a button or
window. The "connection" line from this Controller icon to the "readout" display in the
Calculator window represents a path so that messages can be sent by the Controller object
to the readout display to update the output. It's really just a pointer called "readout" from
one piece of code (the Controller object) to another (the text field object). The Info window
on the right in Figure 2-4 provides information about existing connections and enables
developers to set up new connections. The Info window also displays information about
objects' (e.g., button, Controller) attributes and allows them to be modified.

Figure 2-4. Connection between on-screen and "code" objects in IB

With IB and PB together, it is actually possible to create a working application without any
programming whatsoever! Of course, the application won't do much until you add
application-specific code, but it will look good and it will run. We'll learn more about how
to use IB beginning with Chapter 3 and PB beginning with Chapter 4. In the meantime,
let's look at some other important developer tools.

2.1.3 ObjectAlloc

Memory management is one of the most complicated issues that you will encounter as a
Cocoa programmer. That's because unlike in the C programming language, where memory
management is completely up to the programmer, or the Java programming language,
where memory management is completely automatic, in the Cocoa environment, memory
management is semiautomatic. The programming environment does most of the work, but
you need to do some of it too. And because memory management is semiautomatic, it's
possible to make mistakes.

You can use the developer application ObjectAlloc to watch a Mac OS X application as it

allocates and frees objects. This is not only a useful tool for finding memory leaks and
other problems in your programs - it is also a fun way to learn about Cocoa.

To run the ObjectAlloc application, double-click on the ObjectAlloc icon in the /
Developer/Applications folder. When the application launches, you'll be prompted
with an Open-like dialog titled "Run". Within this dialog you need to navigate to the actual
executable file in the .app folder (directory) of the application you wish to run. Here's
how:

1. Launch the ObjectAlloc application, and you'll get a dialog titled "Run".

2. Resize the Run dialog so that at least four columns are visible, as shown in Figure 2-
5.

Figure 2-5. Opening the Clock executable file with ObjectAlloc

3. Navigate through the filesystem to the Clock file in the /Applications/
Clock.app/Contents/MacOS/ directory. Select this file.

4. Click Open in the Run dialog, and you'll see the ObjectAlloc main window.

5. Click the bevel button with the green "play" arrow on it to start the Clock running
under ObjectAlloc.

6. As the Clock program runs, the bars on the right side of the window change in size,

as shown in Figure 2-6. These bars indicate the number of global allocations of
objects for the Clock program.

Figure 2-6. Watching the Clock's ObjectAlloc application

7. Click the Auto-sort checkbox at the bottom of the ObjectAlloc window and then
the Category column header, so that the table rows remain sorted by category.

8. Scroll down to where the categories begin with the letters "NS". Objects with
names that begin with "NS" are objects from Cocoa's Application Kit that are being
allocated and destroyed by the Clock program.

9. Click the Instance Browser tab to look at specific instances of each object.

10. Click the Call Stacks tab to see what the call stack was at the time that each object
was created.

11. Quit the ObjectAlloc application.

Programs run much more slowly when they are run from within the ObjectAlloc
application, so you generally won't use it to observe programs that you are not debugging.
However, when you need to use it, ObjectAlloc can be handy.

2.1.4 PropertyListEditor

The PropertyListEditor application is used to view and edit property lists stored in .
plist files. A property list is a list of information that is read by applications while they
are launching. The list often contains information such as user preferences, window
position and size when the application was last terminated, and so on. We'll use the
PropertyListEditor application later in this chapter.

2.1.5 IconComposer and the icns Browser

The IconComposer application is used to create .icns files that contain application and
document icons of various sizes. It's not a graphics editor like PhotoShop; rather,
IconComposer accepts icons that you create in applications such as PhotoShop and bundles
them together in one file for use in a Mac OS X application. The icns Browser application
simply displays the contents of .icns files. We'll use IconComposer in our applications
later in the book.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.2 Utilities

In addition to the applications found in /Developer/Applications, there are several
useful developer tools in the /Applications/Utilities folder. These applications
are bundled with the user system, but they can still help developers. The /Application/
Utilities folder is shown in Figure 2-7. The icons in this folder are rather plain (look at
your screen, not the screen shot in the book), indicating their utility status (compare them
with the more colorful icons for the "fancy" applications in the /Developer/
Applications folder).

Figure 2-7. The /Application/Utilities folder contains useful tools for developers

The Console displays information that other applications print on the system console. This
should be familiar to the Unix-savvy. Many Mac OS X programs display error messages on
the system console rather than writing them to a file. The Console application can also
show you a stack-trace of a program that crashes. We suggest you keep this application

handy when programming and testing.

The ProcessViewer graphically shows you all of the processes that are currently running on
your computer. Its output is similar to that of the common Unix programs top and ps,
which can be run in a Terminal window in Mac OS X. A screen shot of the user processes
for the logged-in user (as opposed to the administrator processes) is shown in Figure 2-8.

Figure 2-8. ProcessViewer displaying user processes

The Terminal enables you to work at the Unix command line. There is no counterpart for
Terminal in previous versions of Mac OS, and it's much more powerful than the DOS
command line familiar to Microsoft Windows users. Within Terminal, you can fully
explore the file and operating systems, directly run compilers, run programs, and do much
more. If you are familiar with other Unix operating systems such as Solaris or Linux,
Terminal will make you feel right at home. In the next section, we'll set the scene by
explaining some of the history behind Unix and computing in general. Then we'll show you
a little about Terminal itself.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.3 Working with the Terminal

In this section, we'll cover the details of the Mac OS X Terminal application. Before
getting into those details, though, we'll take a step back to look briefly at the history of the
video display terminal itself. That should give you some insight into why the Terminal
application developed in the way it did.

2.3.1 History of the Video Display Terminal

Many years ago, long before personal computers were developed, computer systems were
too big and too expensive to put on a single person's desk. Instead, computers were put in
special-purpose rooms (called "computer rooms"), where a staff of highly-trained
professionals worked around the clock to keep the machines running. Many computer
systems read their programs from decks of 80-column computer punch cards, each of
which was punched with a series of holes that represented a single line of text. When a
program was finished running the results were printed on a line printer. These systems
were said to implement "batch mode processing" because programs were run in batches -
there was no interactivity at all!

One of the first revolutions in computing was the development of interactive systems. In
addition to being attached to a card reader and a line printer, the computer was equipped
with a modified teletype printer. Every time a key on the teletype was pressed, a distinct
code was sent to the computer. Every time the computer sent a code to the teletype, the
teletype would literally print a letter onto a roll of paper. These interactive systems made
the computer much easier to use. Over time, the teletype printers were replaced with
special-purpose printing terminals that were designed specifically for interactive
computing, rather than for sending telegrams and telexes.

The first video screens were connected to computers by the U.S. military in the late 1950s,
and by universities and research labs in the 1960s. These computer-controlled video
systems were incredibly expensive. The screens were also very specialized: usually, each
video system was designed to run a specific application. Over time, however, the video
systems became more general-purpose.

In the mid 1970s, there was a breakthrough: instead of having the computer directly control
the video screen, a number of companies started to build special-purpose desktop boxes
called glass teletypes or video display terminals (VDTs). To the computer, a VDT looked
like a traditional printing terminal. But instead of having paper, it had a video display, a
character generator, and a small amount of memory. By the late 1970s most of these
systems had standardized on a display that was 80 columns wide and 24 lines high, but
that's about the only thing that was standardized: different VDTs from different
manufacturers had different capabilities and used different codes to do things such as clear

the screen or move around the cursor.

The Unix operating system (Darwin) that underlies the Mac OS X operating system still
shows much of this evolutionary history. Every copy of Mac OS X comes with a program
called ed, a line-oriented editor designed to be used with printing terminals. Likewise,
there is a file called termcap in /usr/share/misc/ that contains the actual control
codes used by thousands of different kinds of printing and video terminals. (You'll even
find Simson's name and email address in this file, with the terminal definition of an
emulator that used to run on the Atari ST!) The termcap file allowed a single program,
such as vi or GNU Emacs, to run on many different kinds of displays. Over the past 25
years, these programs have become highly tuned by generations of programmers. They are
now ideal environments for writing and debugging programs.

Most of the terminals whose names appear in the termcap file are long gone. If you
wanted to, you could hook your Mac OS X laptop up to a model 33 teletype and start
typing in all of the example programs in this book! But you wouldn't do that, of course.
Aside from the fact that you probably couldn't find a working ASR 33, most computers in
use today are built around bitmap displays, rather than character terminals.

Bitmap displays were invented along with VDTs in the 1970s, but they didn't become
popular until the 1980s. The reason was cost: because each pixel of a bitmap display is
individually accessible, the displays required more memory and thus were more expensive
to produce. Of course, today memory is cheap, so practically every computer (from simple
handhelds to ten-thousand-dollar workstations) has a bitmap display. But in the early
1980s, some people were using computers that had bitmap displays while other people had
character-oriented terminals. In some cases, single computers had both bitmap displays and
terminals. Because of this ambiguity, the most popular application for the early bitmap
displays was the "virtual terminal" program - a program that let a single bitmap display
multiple rectangular "terminal" windows, each one simulating a VDT.

This, in a nutshell, is the history behind the Mac OS X Terminal application. Now let's
move on to see how today's Terminal application operates.

2.3.2 The Mac OS X Terminal Application

Like other terminal emulators, Terminal displays rectangular windows on the Macintosh
bitmap display. This virtual terminal responds to the escape sequences contained in the /
usr/share/misc/termcap file. (If you want to look at this file, you can view it in the
Terminal or by using the Finder's Go Go to Folder command. The termcap file
doesn't show up automatically because the Finder hides system details such as the /usr
directory from users.)

The Mac OS X Terminal actually emulates the escape sequences of the Digital Equipment
Corporation VT100 terminal. As such, it provides a conventional interface for running
standard Unix editors, debuggers, and other programs that do not have Mac OS X

interfaces. Figure 2-9 shows a screen shot of a Terminal window running GNU Emacs, the
popular editor available for every version of Unix.

Figure 2-9. Terminal with the GNU Emacs editor running inside

The Terminal's application menu contains the standard Mac OS X application menu
commands. As required, there are About, Preferences, Services, Hide, Hide Others, Show
All, and Quit commands (in the correct positions).

Next to the application menu in the Terminal's menu bar is the Shell menu, which is
located where the File menu usually sits. The Shell menu makes sense in this position
because the Shell New command creates a new (Unix) shell window in Terminal, just
as File New in a text editor creates a new file or document in the editor application.
(A Unix shell is a command language interpreter that provides an interface to the
underlying Unix operating system - Darwin, in Mac OS X. Users can change their shells
from the default tcsh to others, such as csh, sh, or zsh, via the shell pane in the
Preferences dialog.)

The Terminal's menu bar also contains the standard Edit, Window, and Help menus,
together with a Control menu and a (promoted) Font menu (there is no need for a Format
menu). The uncommon Control menu contains commands to move around in a Terminal

shell window.

By choosing Terminal Preferences you can bring up the Terminal Preferences dialog.
The Preferences dialog, shown in Figure 2-10, displays the Window pane, which allows
you to change the size and title-bar contents of your Terminal windows. There are many
other preferences available to the user (click the icons in the toolbar to see them), and Unix
aficionados will find that they can set preferences to emulate the type of Unix environment
to which they are accustomed. We recommend that you take a few minutes to explore the
various preferences available.

Figure 2-10. Terminal Preferences dialog with window pane displayed

Terminal also has a related Terminal Inspector dialog (which you can open with the key
equivalent Command-I) that allows items specific to a particular Terminal window to be
modified. The panes in this dialog are similar to the panes in the Terminal Preferences
dialog. These panes are not redundant - the panes in the Terminal Preferences dialog
change preferences throughout the application, while the panes in the Terminal Inspector
dialog change settings only for the specific Terminal window that is active (these settings
will not be "remembered" as preferences).

If you try to print the contents of a Terminal window, you will be given the choice of
printing all the text output (which is stored in a buffer) to the window, just the selected text,
or just what's visible in the window. You can also copy information from the Terminal
window into other applications or paste information from other applications into a
Terminal window, and you can drag a folder or an icon from the Finder into the Terminal

window (which will result in the path for that folder being entered into the Terminal as if
you had typed it on the keyboard).

2.3.3 Working in a Unix Shell, Step by Step

Next we'll run you through a few steps so you can become familiar with Unix and
Terminal. Since we're working with Unix, we will use the term "directory" instead of
"folder" in this and the gdb sections below.

1. Launch Terminal (from your Dock or from /Applications/Utilities). A
Unix shell window should open (if it doesn't, choose Shell New and check
your Startup preferences).

2. Change the directory by typing the Unix command cd /Applications in this
Terminal window and then hitting the Return (Enter) key. Make sure you include
the space between cd and the slash, and remember that Unix commands are case-

sensitive, so the letters cd need to be lowercase.[1]

3. List all the files in the /Applications directory by entering ls -l in the
Terminal window, as in Figure 2-11. (We use the term "enter" to indicate that the
command should be followed by hitting the Return key.) Note that your system
may have some different files in the /Applications directory from those
shown in the screen shot.

The programs in the /Applications directory are actually directories
themselves, not simple files as they appear to be in the Finder. (You can tell that
they are directories because the first character on the left in the directory listing
output for Mail.app is the letter d, which stands for directory.)

Figure 2-11. Terminal window listing of /Applications folder

4. List all running processes by entering ps aux in the Terminal window (ps is the
Unix command that lists all of the processes currently running on the computer). To
see the details of the process listing better, widen the window and enter ps
auxww; the ww will force the output to be in wide format.

5. List your user processes by entering ps auxww | grep username (where
username is your account username) in the Terminal window. The output should
be similar to that of the ProcessViewer application's listing of user processes. (The
vertical bar character, |, is the pipe symbol that takes the output from ps auxww
and pipes it to input for the grep, or search, utility. For more on grep, enter man
grep in a Terminal window.)

6. Enter top in a Terminal window to run the top program, which will display a real-
time view of system-usage statistics and the running processes, as shown in Figure
2-12. Your top output will definitely be different from that in Figure 2-12.

Figure 2-12. Output from the top program in a Terminal window

The top process list automatically updates every second. The first line of the top display
shows the number of processes that are running. The second line displays the load
averages, or the number of processes that are currently in the run queue - that is, the
number of processes that are ready to run at any given time. The three numbers that follow
Load Avg represent the load averaged over the last 5 seconds, the last 30 seconds, and the
last 60 seconds. The next four lines contain information about the shared libraries and
virtual memory system. Finally, there is a tabular display for each of the currently running
processes. For each process, the percentage of the CPU resources that the process is using
is displayed, along with the time that the process has been running, the number of threads
that the process has, and other information.

7. With the top program still running, activate the Finder and launch the
ProcessViewer application in /Applications/Utilities. As we saw earlier
in this chapter, ProcessViewer will display a list of user processes.

8. Select a process (e.g., Clock) in ProcessViewer's window, then click the small
arrow next to the phrase "More Info" at the bottom left of the window to see more
information about that process. Select the Process ID and Statistics tabs and

compare the information with that in the top output in the Terminal window.

9. Now reactivate the Terminal window and type q to terminate the top program.

To see the text that scrolled outside the Terminal window, drag the scroll knob
upward. Try selecting some of the text in the window with your mouse. The
standard Edit submenu commands Copy, Paste, and Select All work as you would
expect (although Paste forces a scroll to the bottom, a user preference).

2.3.4 The Defaults System

Next we will investigate the defaults (database) system, which records user preferences and
other information that must be stored when applications aren't running. The stored
information includes default fonts, window positions and sizes, toggle settings, etc., most
of which is accessible via an application's Preferences dialog but some of which is not. For
example, the size and position of the main Mail window is stored in the defaults system
when the application is terminated. This stored size and position will be read by the Mail
application when it next launches. Mail will then use this information to place its new main
window in the same position with the same size as when Mail was last terminated. Note,
however, that the stored size and position are not preferences that can be set in a
Preferences dialog; rather, they are values that the user implicitly set by moving or resizing
a window using direct manipulation. (For more information on the defaults system, enter
man defaults in a Terminal window.)

10. Enter defaults read com.apple.Terminal in a Terminal window, and
you'll see the current defaults for Terminal.

If you have not made any changes to the Terminal's preferences, you will see very few
lines of detailed output from this command. On the other hand, if you have been working
with Terminal for a while and have changed your preferences, you may see as many as 50
lines of detailed information. Let's look at part of the output ("localhost" is the name of the
host computer - yours will be different):

localhost> defaults read com.apple.Terminal
{
 AlwaysPromptOnQuit = 1;
 Bell = 1;
 BlinkCursor = 0;
 Columns = 80;
 DockLaunchHide = 0;
 ...
 NSPreferencesContentSize = "{594, 399}";
 Rows = 30;
 SaveLines = 10000;
}

localhost>

These defaults mean that Terminal will prompt before quitting, "ring" the system bell
(beep) when appropriate to alert the user, use the block (and not the blink) cursor, open
new windows with 80 columns and 30 rows, open the Preferences dialog with a specified
size, save up to 10,000 lines in the output buffer, and so on.

11. Back in the Finder, type Command-~ (tilde) or choose Go Go to Folder to
open the Go to Folder sheet.

12. Type "~/Library/Preferences" (use the Tab key for folder-name completion) in the
sheet and hit Return to open the folder.

Terminal's defaults information is stored in the file com.apple.Terminal.plist in
your ~/Library/Preferences folder. This folder contains a variety of property lists
that control the way that the Mac OS X environment is customized for your account.
Because this information is stored under your Home folder, different users of the same
computer can have different environments.

13. Double-click the com.apple.Terminal.plist file, and the
PropertyListEditor application will launch. Remember that PropertyListEditor is
another developer-only application that allows you to view and edit the defaults
stored in a property list (.plist) file for any application.

14. Click the triangle next to Root in the PropertyListEditor window. You should see
the same defaults that you saw in the Terminal window.

In later chapters, you'll create your own property list, which will be stored in your ~/
Library/Preferences folder (the same place as the property lists for Mac OS X
bundled applications). We'll discuss the defaults database in more detail in Chapter 21.

Do not edit the property lists for applications while they are
running! If you do, the application may overwrite your changes.
Exit the application first.

15. Open another application, such as com.microsoft.explorer.plist, in
PropertyListEditor.

16. Quit the PropertyListEditor application.

17. Hide Terminal by choosing Terminal Hide from its main menu or by typing
Command-H. We'll use Terminal again in the next section. (Clicking the red close

button in the Terminal window closes only that window, not the actual application.)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.4 Debugging Programs with gdb

The GNU debugger is gdb. It was written and is maintained by the Free Software Foundation. gdb is a
powerful tool for looking inside a running program and trying to figure out why that program is not behaving as
expected. Apple has modified gdb to be aware of Objective-C syntax and objects, and to work together with the
PB and Terminal applications.

The gdb tool is located in the directory /usr/bin. If you click the Computer icon in the Finder's toolbar and
then select Macintosh HD, you will not see /usr listed. Mac OS X and the Finder hide many system details
from the user, including Unix system directories such as /usr/bin, /bin, and /etc. You can view these
directories in the Finder using the Go to Folder sheet, but you cannot see all directories in the Finder (e.g., the .
app directories are hidden). You can, however, see all the filesystem directories in a Terminal shell - your
vehicle for exploring the guts of Mac OS X.

2.4.1 Using gdb in Project Builder, Step by Step

The easiest way to use the gdb debugger is in PB. We'll show you how to get started with that in this section.
First, we must have an application to work with, so we'll use a copy of the CircleView example application that
is bundled with the Mac OS X developer system.

When you debug a running program within PB, you can access some of the most useful gdb commands
graphically. You can set breakpoints by clicking the mouse next to a line of code (a breakpoint is a place where a
running program stops executing and control is returned to the debugger). When a breakpoint is reached in a
running program, the stack frame and the variables on the stack will be displayed in the debugger window. You
can also use the buttons on the upper-right side of the PB window to control execution. The up and down arrows
will step you up and down the call stack. The arrow over the parenthesis will execute a gdb step command. The
pause button will pause execution, and the button with the triangle will continue program execution.

Let's try a few of these commands on a real example:

1. Open the Go to Folder sheet in the Finder and enter "/Developer/Examples/AppKit".

2. Copy the CircleView folder into your Home folder by Option-dragging the folder and dropping it on
your Home icon. (If CircleView is not available, choose another example application in the same folder.)

3. Click your Home icon and then click the CircleView folder. You'll see the files in the folder in
column view, as shown in Figure 2-13.

Figure 2-13. CircleView folder with files for the CircleView project

4. Open the CircleView project in PB by double-clicking on the CircleView.pbproj project file in the
CircleView folder.

5. Click the build and run button above the Groups & Files pane in PB.

After a few seconds, the application will be built (compiled) and will run. The build and run button will
turn into a stop button. The running CircleView application is shown in Figure 2-14.

Figure 2-14. The CircleView application running

6. You can play with this fun little application by dragging the sliders, changing the text (try entering "Mac
OS X"), changing the color, and clicking the nondescript button below the color well to animate the text.

7. Quit the CircleView application by clicking the stop button in PB's toolbar (or quit CircleView directly).

8. Back in PB, click the disclosure triangle next to Classes in the Groups & Files pane to see the
CircleView.h and CircleView.m class files.

9. Single-click the CircleView.m file to open it in the lower-right pane in PB's main window, as shown
in Figure 2-15.

Figure 2-15. The CircleView project in PB

10. Press the up-down ("stepper") arrows to the right of "<No selected symbol>" in the middle of the PB
window, drag to "-setColor:", and release the mouse button. This action takes you to the "-setColor:"
method (like a function) in the CircleView.m file.

11. Set a breakpoint by clicking the mouse in the white column to the left of "-(void)setColor:". An arrow
should appear, as in Figure 2-16.

Figure 2-16. Stopped at a CircleView breakpoint in PB

In a moment we'll run the CircleView program in debug mode within PB. PB will run gdb in the background

and provide us with a nice graphical interface to many of its commands. (If you want to see that gdb is running
in the background, look at your running processes in ProcessViewer). We'll test some of the graphical commands
available in PB, but first we'll clean out (remove) all of the derived build files in the project to ensure that we
start from scratch:

12. Clean the CircleView build files by clicking the clean active target (whiskbroom) button in PB's toolbar.
Click the clean active target (blue) button in the resulting sheet.

13. Now click the build and debug button in PB's toolbar. The button displays a hammer and a bug spray can
icon that turns into a stop button when the application runs.

The CircleView application should now be running in the foreground. Because we set the breakpoint at the
setColor: method, we won't reach it until we try to change the color.

14. Click the border of the color well in the CircleView window.

You might expect the Font window to appear, but it doesn't because of the breakpoint. Your PB window should
now look like the one in Figure 2-16. You can see the "Step into method or function call" button at the right of
PB's toolbar. This action executes one step (line of code). You can use it repeatedly to step through your
program and debug it line by line.

15. Click the "Step over method or function call" button. This action steps out of the current method.

16. Click the "Continue execution" button. This action continues execution of the CircleView program.

17. Now reactivate CircleView, and the Font window will appear.

18. Quit CircleView.

PB made it easy for us to use gdb to debug CircleView. Next, we'll show you the "hard" way, in a Terminal
window.

2.4.2 Using gdb in a Terminal Window

You can run gdb directly in a Terminal window, or from within GNU Emacs in a Terminal window. Either way,
you must specify the filename of the actual Mach executable file in the /Contents/MacOS directory in the
"app wrapper," rather than the application directory itself (the directory that ends with .app). Thus, to debug the
program CircleView.app with gdb at the Terminal shell command line, type the text shown in bold below.

localhost> cd ~/CircleView/build
localhost> gdb CircleView.app/Contents/MacOS/CircleView
...

gdb now starts up with about 10 lines of output. Next, we'll set the same breakpoint that we set earlier, in PB
(line 160 is where the setColor: method begins in CircleView.m):

(gdb) b CircleView.m:160
(gdb) help
(gdb) quit

That's enough to get you started. Now, to run gdb from GNU Emacs, use the Emacs command:[2]

M-X gdb <return>

After this, Emacs will prompt you for:

Run gdb on file: /Users/me

where /me is the user's home directory.

At this prompt, type the name of the file that you want to debug:

Run gdb on file: ~/CircleView/build/CircleView.app/Contents/MacOS/CircleView

The advantage of using gdb from Emacs is that Emacs will automatically split the screen into two windows,
giving you a gdb buffer in one and following the program that you are debugging in the other. Many
programmers find this an effective way to work.

2.4.3 gdb Commands

gdb is a complicated program with dozens of commands. Fortunately, to get started you need to know only a
few basic commands.

Typically, when you are using gdb, you will set a breakpoint and then run your program until you reach that
breakpoint. Your program will then automatically stop running, and you will be free to inspect the contents of
the variables. Table 2-1 lists the commands you would use to set breakpoints at a few sample locations.

Table 2-1. gdb commands for setting breakpoints

Use this gdb command To set a breakpoint at

b myFile.m:53 Line 53 in the file myFile.m

b printer The function printer()

b [MyView drawrect:] The Objective-C method drawRect: in the class MyView

To run your program, enter run in the Terminal window. After your program reaches a breakpoint (or if your
program crashes), you will return to the gdb command line. You can also interrupt your program's execution by
typing Control-C. From the command line, you may find the commands in Table 2-2 useful in debugging.

Table 2-2. Useful gdb commands

Command Purpose

run Starts your program

where Shows a stack-trace of your program

list Lists part of your code

print expr Displays the value of a local variable (expr); p is a shortcut

You can control program execution using the n command in gdb to execute the next statement and the s
command to execute another step of your program. The difference between these two commands has to do with
how they handle function calls. If the next statement to be executed is a function call, the s command will step
into the function, whereas the n command will cause the entire function to be executed and then stop the
program. When you are stopped within a program, the up command will jump you up the call stack, while the
down command will take you down the call stack.

That's enough of gdb for now. Use gdb's help command to learn more.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.5 User Interface Design

Although not strictly a development tool, user interface design is certainly something that
developers need to be concerned about. Some developers spend far too little time designing
the user interface of an application, yet that is the part that makes the first impression on
most users. An application's user interface may well determine its success or failure.

To properly address all user interface design issues would take another book. However,
user interface design is so important that we've listed a few tips for novice designers here:

● When developing a new application, create the user interface first. Then the user
interface will more likely be written for the user, not the programmer. There's
nothing worse than making an interface conform to code. Remember, you are
writing your application for users, not for yourself.

● Don't put too many windows on the screen when your application is launched. If
you do, the user may be confused and may not even know where the focus of your
application lies. Also, don't start up your application with windows overlapping one
another.

● Don't violate users' expectations. In part, this means that you should follow the
Aqua user interface guidelines for menus, windows, panels, and so on. If you don't
have the time to read the interface guidelines (they are long, but are discussed
throughout Chapter 1), try to make your application look and work like other Aqua
applications, such as the Finder, Mail, and TextEdit.

● Don't confuse the grouping of functionality. Some applications are riddled with
menus and dialogs that confuse functionality. For example, viewing and font
options should not be in the same menu.

● Balance your menus so that there are no more than 10 items per menu. Also, avoid
creating short menus (i.e., one or two items) between the standard Edit and
Window menus.

● Don't use too many different fonts and styles for your application. Keep the
interface as simple as possible, and show your tricks in the About box.

● Provide sufficient WYSIWYG before a choice is set so that the user knows what
the result of an action will be. For example, in the General pane of the System
Preferences application, the Appearance and Highlight colors are displayed in the
pop-up menu before they are selected.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.6 Summary

In this chapter, we started out by taking a brief look at many of the Cocoa development
tools. In /Developer/Applications, where most of the tools are located, we looked
at PB, IB, ObjectAlloc, PropertyListEditor, IconComposer, and the icns Browser. There are
other useful tools in that folder that we did not cover - launch them and find out what they
do. In /Applications/Utilities, we looked at Terminal, Console, and
ProcessViewer. We spent the most time with the gdb debugger, because it's an essential
developer tool. We also worked with the filesystem and took a quick look at user interface
design.

In the next chapter we'll take a closer look at IB, Apple's powerful tool for building
application interfaces, and create our first program.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 2. Tools for Developing Cocoa Applications

2.7 Exercises

1. Work through the steps in Section 2.1.3.

2. Work through Section 2.3.3. Make a list of the things you discovered while
working through the steps.

3. Work through Section 2.4.1.

4. Copy the /Developer/Examples/AppKit/TextEdit folder into your
Home folder and build and run it - it's the same TextEdit application that we used
in the last chapter. Explore the files associated with the TextEdit project in PB and
IconComposer.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part I: Cocoa Overview

Chapter 3. Creating a Simple Application with Interface
Builder

Interface Builder is Cocoa's main development tool for creating user interfaces for your
applications. It lets you graphically design the windows that your application will use,
together with all of their associated menus, buttons, sliders, and other objects. After you've
put together the basic interface for your application, IB lets you "wire" (connect) together
the parts (objects) and save all these specifications so that your application can use them
when it runs.

This chapter introduces you to IB. We'll build a very simple interface for an application
and test it with IB's Test Interface command. We won't use this interface beyond this
chapter; we won't even save it. Our only goal here is to give you a sense of the ease and
power of IB.

Let's start by taking a look at a typical Cocoa developer's screen, shown in Figure 3-1. The
application being built is a simple calculator, and the IB development tool is the active
application. The window at the top left that looks like a calculator is the interface for the
calculator application under development. Similarly, the small window below the
calculator window is the menu interface for the calculator application. The window at the
bottom left and the two windows near the Dock are IB development support windows (and
therefore aren't part of the calculator application itself). In the center of the screen is a
Project Builder window containing source code for the calculator application. We'll use
both PB and IB in Chapters Chapter 5 through Chapter 8 to create this very calculator
application. An important icon in the Dock is the icon for IB.

Figure 3-1. A Cocoa developer's screen

At first glance you might think of IB as only an application prototyping tool. While IB can
be used for prototypes, its primary use is to build the actual graphical user interfaces for
Cocoa applications. IB is much more than a prototyper; it is an integral part of the Cocoa
programming environment.

IB works together with PB to provide a skeleton of source code to which a developer can
add application-specific code. Note the hammer in PB's icon.

To keep things simple, we won't even use PB or build a complete project until the next
chapter. However, in this chapter we do hope to delight you by demonstrating the powerful
object-oriented development environment of Cocoa.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 3. Creating a Simple Application with Interface Builder

3.1 Getting Started with Interface Builder

1. Launch IB by clicking its icon in your Dock (or Finder).

2. Choose Interface Builder Hide Others to simplify your screen.

Your screen should look similar to the screen shot in Figure 3-2. IB's main menu is at the
top of the screen, its Starting Point window is on the left, and its Palettes window is on the
right of the screen. The windows on your screen may be in different locations, and the
Palettes window may show a different palette from the Cocoa-Menus palette shown in
Figure 3-2 (click the buttons in the Palettes window toolbar to change the palette). You can
specify which windows show up at launch time in IB's Preferences dialog. Also, as with
many Mac OS X applications, IB will remember its state from when it was last terminated.

Figure 3-2. IB immediately after launch

Now that we've launched IB, we can start building our own application.

3. Make sure that Cocoa Application is selected in IB's Starting Point window
(as in Figure 3-2), then click the New button.

The screen has now become more interesting, with the addition of three new items (see
Figure 3-3). Near the top of the screen in Figure 3-3 is an empty window titled

"Window" (again, note that the locations of these windows on your screen may differ
slightly). On the left in the middle of the screen is a menu bar titled "Untitled -
MainMenu". Don't try choosing commands from this menu right now - it's the main menu
for the application that you are building. In subsequent chapters we'll show how you can
tailor this menu with commands and submenus to suit a particular application.

Figure 3-3. IB after creating a new Cocoa application

In the lower-left corner of the screen in Figure 3-3 is the Nib File window for the new
application. The Nib File window and menu are titled "Untitled", because you have yet to
give the application a name. A nib is a file that contains information about an application's
interface; we'll discuss nib files in great detail later. (Note that the Palettes window at the
right in Figure 3-3 shows a new palette, the Cocoa-Other palette. We clicked the third item
from the left in the Palettes window toolbar so you could see this palette in the figure).

The icons in the Nib File window under the Instances tab in Figure 3-3 (e.g., File's Owner)
represent predefined objects available to your new application. If you add more windows
or panels to your application, icons representing these objects will also appear under the
Instances tab in the Nib File window. When clicked, the other tabs (Classes, Images,
Sounds) in this window show other resources available for your application. If there are too
many objects to be displayed in the Nib File window, you can drag the window's vertical
scroll knob to see them all. You can also resize this window if you want. Most windows

that have a scroller should be resizable; this is important to remember when you start
designing your own applications.

Let's look at the individual objects under the Instances tab for a new application, like the
one shown in Figure 3-3:

File's Owner

In this example, the File's Owner icon represents the main object in charge of
running your application. This object is called "NSApp" and is of the
NSApplication class type. We'll go into more detail about what this object is and
what it does later in this book. For now, just think of this icon as the object that
controls the nib.

MainMenu

The MainMenu icon represents the new application's menu structure. At this point
it consists of the five submenus (NewApplication, File, Edit, Windows, and Help)
shown in the associated menu in the middle of Figure 3-3. These menu commands
don't do anything significant until you test or run the application.

Window

The Window icon in the Nib File window represents the application's main window
- the bland window titled "Window" that IB automatically created when you chose
Cocoa Application. The Nib File window will contain an icon for every
standard window and panel in your application. If a window or panel in the
application you're building isn't visible (e.g., if it's behind another window or was
closed to simplify the screen), you can make it visible by double-clicking its icon in
the Nib File window.

First Responder

A responder is an object that receives and responds to Cocoa events. Most of these
events come from the keyboard or the mouse. The First Responder icon represents
the object that will receive keyboard events. This is usually the active control of
your application's key window - that is, the object inside the window (or dialog)
with the highlighted title bar that will receive keyboard events. As your application
executes, the First Responder changes based on user events. Being able to send
messages to the First Responder, rather than to a specific object, is one of the many
very useful features in Cocoa!

We've discussed the contents displayed under the Instances tab in IB's Nib File window.
Next, we'll discuss what's under the Nib File window's other three tabs:

Classes

The Classes tab in the Nib File window shows the hierarchy of all the Objective-C
classes that your new application knows about (see Figure 3-4). Classes define and
create objects such as windows and buttons, as we'll see in subsequent chapters.
IB's Classes menu commands work together with the classes in this hierarchy. You
can add, modify, and perform other operations on classes within IB. In Figure 3-4,
you can see the hierarchy of classes for the NSWindow class. We'll discuss this
hierarchy in more detail in later chapters.

Figure 3-4. Classes tab selected in Nib File window

Images

The Images tab in the Nib File window displays representations of the icons and
other images that are available to the application. When you click the Images tab,
IB will display the available images in the Nib File window, as shown in Figure 3-
5.

Figure 3-5. Images tab selected in Nib File window

Every Cocoa application is provided with a system icon called NSApplicationIcon - the
generic application icon that shows up in the Dock and elsewhere for a running application
that has no custom application icon. You can add your own image by dragging its file icon
from your Finder and dropping it in the Nib File window. Alternatively, you can add an
image by pasting it into this window.

All of the icons in the Instances, Images, and Sounds views in the Nib File window have
their names displayed below them. Some of the names are in black, while others are in dark
gray. The names in gray cannot be changed, but you can change a name in black by double-
clicking it and typing a new name. Changing an icon's name in the Nib File window has no
effect on the rest of the application you're building. For instance, if you change the name of
the icon "Window" to "Steve's Window", the window itself will still be titled "Window".
These icon names in the Nib File window are generally only for the convenience of the
developer.

Sounds

The Sounds tab in the Nib File window displays representations of the sounds that
are available to the application. When you click the Sounds tab, IB will display
icons for the available sounds in the Nib File window, as shown in Figure 3-6
(we've resized the window so you can see all of the icons).

Figure 3-6. Sounds tab selected in Nib File window

Sounds are an integral part of many Cocoa applications. Used appropriately, sounds can
make an application easier and more fun to use. One very appropriate use of a sound is to
alert the user to an unexpected event. For example, when you try to copy a file to a folder
that contains a file with the same name, the Finder alerts you by playing your chosen
system beep.

Every Cocoa application is provided with numerous system sounds, such as Basso, Bonk,
and Frog. These sounds are located in the /System/Library/Sounds folder. As with
the Images tab view, you can add your own sounds to the application by dropping their file
icons in the Nib File window.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 3. Creating a Simple Application with Interface Builder

3.2 Adding Objects to Your Application

In this section, we'll customize our new application's main window, "Window". It's
wonderful that IB automatically provides every new application with this window, but it's
rarely the right size. Sometimes it's too small; usually it's too big. Fortunately, we can
easily resize the window as we would any Mac OS X window.

4. Resize the window titled "Window" to a height of about one inch and a width of
about three inches.

Notice that you don't need to know the exact height and width of this window to set its
size; you simply resize it visually and you're done (remember, you're building an
application here). This is a good example of the basic philosophy of IB - graphical things
are best done graphically. This philosophy is at the heart of Cocoa's ease of programming.
(On the other hand, you can resize the window to precise dimensions using the NSWindow
Info dialog, if necessary.)

3.2.1 Adding a Button Object to Your Window

The IB Palettes window near the upper-right corner of the screen contains seven (or more)
palettes of objects that can be dragged into your application. By clicking one of the selector
buttons in the toolbar near the top of the Palettes window, you can choose which palette is
visible. The Palettes window is a multi-view window, in which one of several different
views (panes) can be displayed depending on your selection of a tab, pop-up menu item, or
other item. The Nib File window is also a multi-view window, but its different views are
selected via tabs rather than via toolbar icons.

One of the most useful palettes in the Palettes window is the Cocoa-Views palette. The 14
objects in this palette are mainly Control objects (see Chapter 1) and are labeled in Figure
3-7. (Note that some objects are of the same type but have different attributes; also note
that palettes may be different in future Mac OS releases.)

Figure 3-7. Cocoa-Views palette in IB

You can drag an object from the Cocoa-Views palette and drop it into any window or panel
of the application you're building. Let's see how this works:

5. Make sure the Palettes window displays the Cocoa-Views palette by clicking the
second icon from the left in the Palettes window toolbar. The window's title bar
should read "Cocoa-Views", as shown in Figure 3-7.

6. Add a button to your application by dragging the Button icon from the Cocoa-
Views palette and dropping it into the window titled "Window". The window
should look something like the one in Figure 3-8.

Figure 3-8. Window with selected button in IB

You can resize this new button by dragging some of the little gray circles, or handles,
around the button's perimeter (the handles on your screen may be a different color,
depending on your highlight color preference). You can move the button by pressing in the
center of the button and dragging the button to the desired location within the window.

7. Resize the button so it's a little wider by dragging the right-middle handle on the
button.

8. Move the button so it's in the same location as in the earlier screen shot. (Note that
blue guidelines pop up as you move the button near a border of the window. These

can be useful when you're arranging the contents of a window.)

9. Change the name of the button to "Noise". To do this, double-click the button's title
("Button") - the button's text will highlight to indicate that it's been selected. Then
type "Noise" and hit Return.

Now you've got a simple window with a button. Let's try it out!

10. Choose the File Test Interface menu command (or type the keyboard
equivalent, Command-R).

All of the standard IB windows will disappear (as shown in Figure 3-9), and you'll be left
with your new application's main window and menu (except for the IB name on the left). It
looks as though the new application is running, but in fact we're only testing its interface
within IB; there is no executable file.

Figure 3-9. Testing the interface of a new application

Notice that the IB icon in your Dock has changed from its original Build mode to the
"Frankenstein switch" icon. This new icon indicates that your program is now in Test
Interface mode. You can move, resize, miniaturize, and even close the window titled
"Window". Several of the menu commands work, too! Try the File Close menu
command, for example (of course, the application doesn't do much at this point). Press the
Noise button and note that it turns blue, as if it had been pushed (clicked).

11. Quit the Test Interface mode by choosing Quit NewApplication from the IB menu
(or by typing Command-Q).

3.2.2 Giving Your Button a Funky Sound

Next, we'll show how easy it is to add sound to a button:

12. Click the Sounds tab in the Nib File window to see the sounds available to the new
application.

13. Drag one of the sound icons (e.g., Funk) and drop it on top of the Noise button in
the window, as shown in Figure 3-10.

Figure 3-10. Dropping a sound on the Noise button

The button will highlight, indicating that it will accept the noise as an attribute. Also note
that IB's inspector (or Info) window opens at the lower right of the screen and shows the
attributes of your Noise button.

3.2.3 Inspecting and Changing Your Button's Attributes

Next, we'll show how easy it is to change a button to act as if it has been clicked when the
user hits the Return key:

14. Make sure the Noise button is selected (handles appear around its border) by
clicking it once.

15. Choose Tools Show Info to display the Info dialog (window), shown in Figure
3-11 (the Info dialog was probably already open). Select Attributes in the pop-up
menu if it isn't already selected.

Figure 3-11. NSButton Info dialog for Noise button

The Info dialog contains information (attributes, etc.) about the selected button.
Note that the title (Noise) and sound (Funk) associated with the button show up in
this window.

16. Click the "<no key>" pop-up menu and choose the Return menu item from the list.

Note that the Noise button turns blue, indicating that it's the default button. When a
user hits the Return key, the default button acts as if it has been clicked.

17. Choose File Test Interface again.

18. Click the Noise button, and you'll hear the sound that you dropped on top of the
button.

19. Hit the Return key, and you'll hear the sound again (because you made the button
the default).

20. Choose Quit NewApplication from IB's main menu to return to IB's Build mode.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 3. Creating a Simple Application with Interface Builder

3.3 Objects, Messages, and Targets

The Cocoa Application Kit is written in Objective-C, a hybrid language based on ANSI C
and SmallTalk that was developed by Brad Cox. The principal building block of object-
oriented programs is the object. Objects can be thought of as bundles of related ANSI C
variables and functions with lots of extra functionality.

Objective-C objects are self-contained code entities that communicate by sending messages
to one another. A message is like a function call in a traditional programming language in
that it causes a procedure to be executed. However, a message is unlike a function call in
that it is sent to a specific object; it is not simply "called." The procedures that are executed
- called methods in Objective-C - are "encapsulated" inside objects, and thus different
objects can respond to the same message in different ways.

Unlike some object-oriented languages, Objective-C doesn't require that you know the type
(class) of an object before you send it a message. This is known as dynamic or runtime
binding; the message is bound to the object at runtime instead of compile-time. It allows
for much greater flexibility, because certain decisions can be made following a user's
action. For example, when a user chooses Cut from an application's Edit submenu, a cut:
message is sent to a target object (the colon is part of the message). If an application lets a
user cut text, graphics, and other types of data, the cut: message will have varying targets
that won't be known until runtime. With runtime binding, the application doesn't need to
know the class of the target object before the cut: message is sent.

3.3.1 Objects and Classes

Under Cocoa, every on-screen object is represented by an Objective-C object inside the
computer's memory. In our little Noise button application, there's an NSWindow object that
displays and controls the application's on-screen "Window" window, and there's an
NSButton object that displays and controls the Noise button. There's yet another object for
the application's "Untitled - MainMenu" window, and one additional object for each of the
individual menu items inside the menu.

Every Cocoa object belongs to a class , which both defines and creates the object. Many of
the Cocoa class names are fairly self-explanatory. For example, the classes of the on-screen
objects in the application we just described are listed in Table 3-1.

Table 3-1. On-screen objects in the application

Object in the application Class

The window ("Window") NSWindow

The button ("Noise") NSButton

The main menu ("Untitled") NSMenu

The menu items (Info, Edit, Hide, Quit) NSMenuItem

The "NS" in the prefix to each class name is a holdover from NeXTSTEP (NS), the
application framework that spawned Mac OS X.

There are many other objects present in this application that aren't immediately apparent
because they have no obvious corresponding objects on the screen. Some of these objects

are listed in Table 3-2.[1]

Table 3-2. Additional objects in the application that aren't immediately apparent on-
screen

Object name Class Purpose

NSApp NSApplication The application's main controlling object

[myWindow contentView] NSView
Defines the content area of the window
where the application can draw

n/a NSButtonCell
The Button's supporting Cell object, which
actually displays the button

Notice that the second object in Table 3-2 has a funny name with square brackets. The
square brackets are the Objective-C messaging operator. The phrase "[myWindow
contentView]" means "send the contentView message to the object pointed to by the
variable called myWindow and return the result." The result is a pointer to the contentView

object (or simply "content view") inside myWindow. A pointer to an Objective-C object is
called an id. When the application starts up, we don't have the id for myWindow's content
view object. We can get it only by sending a message to the myWindow object
(myWindow here is the Objective-C variable name for the pointer that points to the
Window object titled "Window").

Messaging is one of three major elements of the Objective-C language that you need to
learn about in order to write Cocoa programs. The second is how to construct your own
classes. The third is how to use a few of the important classes that are part of the Cocoa
environment - in particular, the classes NSWindow, NSView, and NSApplication. Once
you understand these three things, the very heart and soul of Cocoa, you will understand
most of what you need to know to write Cocoa programs.

3.3.2 Targets, Actions, and Connections

Many of the objects in Cocoa's Application Kit are set up so that when you manipulate an
on-screen object in a running application, a message is automatically sent to a second
object. These objects are called control objects. (The Noise button object we discussed
earlier is a control object.) The object that receives the message is called the target of the
sending object. The procedure (method) that the target is instructed to perform is called the
action. We'll refer to this as the target/action paradigm.

For example, when you choose the Quit menu command from an application's menu, the
associated NSMenuItem object sends a terminate: message to the control object, NSApp
(also known as the File's Owner).

The terminate: message has the form [NSApp terminate:self]. The action is terminate:,
and self is an argument specifying the object that sent the message. This message causes
the NSApp object to execute its terminate: method, which terminates the program.
Likewise, the NSMenuItem object associated with the Hide menu command sends the
hide: message to NSApp, which causes NSApp to remove all of the application's windows
from the screen. Note that the colons (:) shown above are actually part of the Objective-C
method names.

To see how this works in practice, let's add two more control objects - a text field and a
slider - to the new application's window. First we'll put them in the window, and then we'll
wire (connect) them together so that a message can be sent from the slider to the text field.

1. Return to the application you built previously within IB's Build mode.

2. Drag the icon for the simple NSTextField object from the Cocoa-Views Palettes
window into the window titled "Window".

3. Click the Cocoa-Other button at the top of the Palettes window to display the

sliders available to applications under construction.

4. Drag the icon for the horizontal grid slider object from the Cocoa-Other Palettes
window into the window titled "Window".

5. When you're done, you should have a window that looks like the one in Figure 3-
12.

Figure 3-12. Window with new text field and slider in IB

Next, we'll make a connection so that the slider (NSSlider) object can send a message to
the text field (NSTextField) object whenever the slider's knob is moved.

6. Hold down the Control key on the keyboard and drag from the slider object to the
text field object (note the direction). You will see a "connection wire" linking the
slider to the text field, as shown in Figure 3-13.

Figure 3-13. Connection wire from slider to text field in IB

7. Release the mouse button, and IB's Connections Info dialog (NSSlider Info) will
appear near the lower-right corner of the screen (see Figure 3-14). The Connections
Info dialog lets you make or break connections between objects.

Figure 3-14. Connections and attributes of NSSlider object

Connections from a control object (i.e., the slider) to another object have two parts: a target
and an action. You already specified the NSTextField object as the target (or receiver or
destination) of a message when you connected the NSSlider object to the NSTextField
object (in that direction). You specify which action (method) the target should perform in
response to an event in the NSSlider Info dialog. Your choices for the action are listed
under "Actions" in the Info dialog on the left of Figure 3-14. (If you had connected the
NSSlider object to a different target, such as the NSButton object, you would see a
different list of actions, because an NSButton object can perform a different set of actions
from those performed by an NSTextField object.)

The action we'll use here is takeIntValueFrom:, which causes the NSTextField object to
ask the sender (the NSSlider object) of the original message for its integer value (only the
grid marks have values on this particular slider). This integer corresponds to the position of
the NSSlider object's knob.

8. Select the takeIntValueFrom: action in the Connections Info dialog and then click
the Connect button. (Alternatively, you can double-click the takeIntValueFrom:
action.)

After you make the connection, the Connect button becomes a Disconnect button, as in the
inspector window on the left of Figure 3-14, and the connection dimple appears next to the
action name in the Info dialog.

9. Make sure the slider is selected (handles appear), then choose Attributes from the
pop-up menu in the NSSlider Info dialog.

10. Change the Maximum value of the slider from 100.0 to 1000.0 and change the
Current value to 200.0. Note the other attributes, such as Marker Values Only, in
the Info dialog on the right of Figure 3-14.

11. Test the interface again by choosing IB's File Test Interface menu command
or typing Command-R.

12. Drag the NSSlider object's knob. As you move it, the NSTextField object will
update the integer it displays according to the knob's position (see Figure 3-15).

Figure 3-15. Testing the slider connection to the text field in Test Interface mode

13. Choose Quit NewApplication from IB's main menu.

Figure 3-16 shows the communication between the NSSlider and NSTextField objects. A
mouse-drag event on the slider knob causes the NSSlider object to send the
takeIntValueFrom: message to the target NSTextField object, which executes its
takeIntValueFrom: method (this results from the connection we set up). The
takeIntValueFrom: method then sends the intValue message back to the NSSlider object,
which returns the slider's current value of 700 to the NSTextField object, and then the
NSTextField object displays the result. (We didn't have to tell the NSTextField object's
takeIntValueFrom: action procedure to send the intValue message back to the NSSlider
object; the NSTextField object is smart enough to know how to get an integer value from
the sending object.)

Figure 3-16. Communication between NSSlider and NSTextField objects

This may seem like a lot of overhead, but messaging is actually quite fast - only slightly
slower than a standard function call. And the benefits are wonderful, as we'll see.

14. Quit IB. There's no need to save any of the files or interface specifications.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 3. Creating a Simple Application with Interface Builder

3.4 Summary

In this chapter, you've learned a little about the workings of IB and Objective-C. You've
seen that on-screen objects have corresponding Objective-C objects stored in the
computer's memory. You've also seen a special class of object called a control in action,
and you've seen that a control can have a target, which is another object that is
automatically sent a message to perform an action when the control object is manipulated
by the user.

In the next chapter, we'll cover the basics of Objective-C, Cocoa's native programming
language. We'll also take a look at the basic Objective-C classes that Cocoa provides to
make writing complicated programs much easier.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 3. Creating a Simple Application with Interface Builder

3.5 Exercise

Work through all of the steps in this chapter, but use different on-screen objects. For
example, use a rounded bevel button from the Cocoa-Views palette (instead of a push
button) and a continuous vertical slider (instead of a horizontal one with markers). Find a
icon in the filesystem and figure out how to place it on the bevel button. Also, use the
takeFloatValueFrom: method to connect the slider to the text field. Use Test Interface
mode to test your work.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part I: Cocoa Overview

Chapter 4. An Objective-C ApplicationWithout
Interface Builder

As we saw in Chapter 3, Interface Builder is a tremendously powerful program. But IB also
hides a lot of the nuts and bolts of how Cocoa applications work, and a knowledge of those
nuts and bolts will serve you well as you learn Cocoa programming. In this chapter, we
will create a simple Cocoa application in Objective-C without using IB. In the process,
we'll learn the fundamentals of the Objective-C programming language, the Cocoa class
hierarchy, and memory management under Cocoa.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.1 The Tiny.m Program

In this chapter, we'll discuss a small application called Tiny.m (the .m extension means that the file
contains Objective-C code). This program will bring up a window and will draw a dodecagon (12-sided
polygon) with a fancy pattern in it (see Figure 4-1).

Figure 4-1. The Tiny.m application window

Before discussing the application in detail, we'll show you the complete Objective-C source code for Tiny.
m - Example 4-1. We're showing you this now because the best way to learn a new language is to read a
program that's written in that language. As you'll see, much of the code in Tiny.m that relates to on-screen
objects will not be necessary when we combine Objective-C with IB.

Throughout this book, we've elected to include comments in the programming
examples, even though we are also explaining the code within the book's text.
We do this because it is good programming style to include comments in the
code. We hope you'll get used to using comments in the code that you write.

Example 4-1. Tiny.m

/* Tiny.m

 * A tiny Cocoa application that creates a window
 * and then displays graphics in it.
 * IB is not used to create this application.
 */

#import <Cocoa/Cocoa.h> // include the Cocoa Frameworks

/**
 ** A DemoView instance object of this class draws the image.

@interface DemoView : NSView // interface of DemoView class
{ // (subclass of NSView class)
}
- (void)drawRect:(NSRect)rect; // instance method interface
@end

@implementation DemoView // implementation of DemoView class

#define X(t) (sin(t)+1) * width * 0.5 // macro for X(t)
#define Y(t) (cos(t)+1) * height * 0.5 // macro for Y(t)

- (void)drawRect:(NSRect)rect // instance method implementation
{
 double f,g;
 double const pi = 2 * acos(0.0);

 int n = 12; // number of sides of the polygon

 // get the size of the application's window and view objects
 float width = [self bounds].size.width;
 float height = [self bounds].size.height;

 [[NSColor whiteColor] set]; // set the drawing color to white
 NSRectFill([self bounds]); // fill the view with white

 // the following statements trace two polygons with n sides
 // and connect all of the vertices with lines

 [[NSColor blackColor] set]; // set the drawing color to black

 for (f=0; f<2*pi; f+=2*pi/n) { // draw the fancy pattern
 for (g=0; g<2*pi; g+=2*pi/n) {
 NSPoint p1 = NSMakePoint(X(f),Y(f));
 NSPoint p2 = NSMakePoint(X(g),Y(g));
 [NSBezierPath strokeLineFromPoint:p1 toPoint:p2];
 }
 }

} // end of drawRect: override method

/* windowWillClose: is a delegate method that gets invoked when
 * the on-screen window is about to close (user clicked close box).

 * In this case, we force the entire application to terminate.
 */

-(void)windowWillClose:(NSNotification *)notification
{
 [NSApp terminate:self];
}
@end // end of DemoView implementation

/*
 * setup() performs the functions that would normally be performed by
 * loading a nib file.
 */

void setup()
{
 NSWindow *myWindow; // typed pointer to NSWindow object
 NSView *myView; // typed pointer to NSView object
 NSRect graphicsRect; // contains an origin, width, height

 // initialize the rectangle variable
 graphicsRect = NSMakeRect(100.0, 350.0, 400.0, 400.0);

 myWindow = [[NSWindow alloc] // create the window
 initWithContentRect: graphicsRect
 styleMask:NSTitledWindowMask
 |NSClosableWindowMask
 |NSMiniaturizableWindowMask
 backing:NSBackingStoreBuffered
 defer:NO];

 [myWindow setTitle:@"Tiny Application Window"];

 // create amd initialize the DemoView instance
 myView = [[[DemoView alloc] initWithFrame:graphicsRect] autorelease];

 [myWindow setContentView:myView]; // set window's view

 [myWindow setDelegate:myView]; // set window's delegate
 [myWindow makeKeyAndOrderFront: nil]; // display window
}

int main()
{
 // create the autorelease pool
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // create the application object
 NSApp = [NSApplication sharedApplication];

 // set up the window and drawing mechanism
 setup();

 // run the main event loop
 [NSApp run];

 // we get here when the window is closed

 [NSApp release]; // release the app
 [pool release]; // release the pool
 return(EXIT_SUCCESS);
}

Before we analyze the program, we suggest that you type it in and save it in a file called Tiny.m.

We strongly recommend that you type the examples within this book by hand,
rather than downloading them from the Web. You will learn more about Cocoa
programming by actually typing in the examples - and then finding your typos -
than you will by merely reading them.

You can use any of the text editors that come with Mac OS X: Project Builder, TextEdit, GNU Emacs, vi,
or ed. If you're just starting out with Unix, you'll probably want to use PB or TextEdit, because they work
like most other Cocoa programs and have several nice features for writing code. TextEdit is the basis of the
editor that's built into PB. It is extended in PB with some powerful features for browsing a program's source
code and interfacing directly with gdb, the GNU debugger we discussed in Chapter 2.

Using Character-Based Editors with Mac OS X

Mac OS X comes with a variety of "programmer's editors" that you can use for editing text files.
These editors include TextEdit, GNU Emacs, vi, and ed. With the exception of TextEdit, all of
these editors were developed for character-based terminals and must be run from the Terminal
application, which we described in Chapter 2.

Don't be scared off from these other editors just because they may seem antiquated. Many
programmers and system administrators use GNU Emacs. It's a powerful editor that can handle
dozens of files at the same time. It's programmable, and it has a built-in mail reader, a
development environment, and many other tools. Unlike TextEdit and PB, GNU Emacs can, for
example, automatically reindent a block of text that's been copied from one place in your
program to another. GNU Emacs has a "tags" system that allows you to place your cursor on a
function call and automatically jump to where that function is defined. All in all, it is a
considerably more powerful tool for editing code than PB. What's more, GNU Emacs is
available for Unix, Windows, and Mac OS 7 and above, allowing you to use a consistent editor
on all platforms.

The vi editor is the descendant of the Unix "visual" editor that Bill Joy (of Sun Microsystems,
Inc.) wrote in 1976. The vi editor is included with Mac OS X because some people have
hardcoded it in their brains and really love it.

After you've typed the source code in the file Tiny.m, open a Terminal window and change to the directory
where the file resides. Compile Tiny.m and then (if there are no errors inadvertently introduced by typing
mistakes) run the executable Tiny with the commands shown here in bold type:

% cc -Wall -o Tiny Tiny.m -framework Cocoa
% ./Tiny

Tiny is now running - look for its window.

The components of this compiler call command are described in Table 4-1.

Table 4-1. Compiler call command components

What you typed What it means

cc
Invokes the C compiler. (In Cocoa, the C, Objective-C, and C++ compilers are
all invoked with this same command, although the C++ compiler is usually
invoked with the /usr/bin/c++ command.)

-Wall Makes the compiler list all warnings.

-o Tiny Places the result of the compilation in the Tiny file.

Tiny.m
Compiles the program in the Tiny.m file (which resides in the working
directory).

-framework Cocoa Instructs the linker to use the Cocoa "framework."

If the program compiles without errors (and there should be no errors, not even any warnings), you can run
it as specified above, by typing "./Tiny" and hitting Return.

You should see the window displayed earlier, in Figure 4-1.

This demo program lacks many fundamental elements of a standard Cocoa
program, and therefore it does not interact properly with the Mac OS X
environment. In particular, this program does not display a menu, it does not
bring its window to the front of the window stack when it starts up, and it does
not appear in the Dock. A side effect of these characteristics is that you may find
it difficult to find the Tiny window. If this happens to you, try hiding your
running applications until the Tiny window appears.

You can close the Tiny application by clicking the red close button at the top-left corner of its window or by
typing Control-C in the Terminal window.

Before we explain how Tiny works, let's take a detour and look at some basics of the Objective-C
programming language. This discussion is not meant to be exhaustive, but rather a foundation on which we
can build throughout the rest of the book.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.2 An Introduction to Objective-C

We discussed Objective-C briefly in the last chapter. In this chapter, we'll go into a lot more depth.

The Objective-C language was invented by Brad Cox in the early 1980s and was based on the object-
oriented principles of SmallTalk. Cox wanted to create a computer environment that could be used to build
software-ICs - software components that could be used to create large programs in much the same way that
discrete integrated circuits are used to create computers. Cox wrote a book, Object-Oriented Programming:
An Evolutionary Approach, in which he outlined his strategy of grafting object-oriented technology onto
existing programming languages (e.g., C), rather than creating fundamentally new languages (e.g., Simula
and SmallTalk). And he founded the Stepstone Corporation to bring his brainchild to the market.

Objective-C is based on two important principles. First, Cox wanted to create a language that offered much
of the object-oriented programming power that existed in SmallTalk. Specifically, he wanted a language in
which both classes and instances of classes were objects, a language that allowed introspection, and a
language that performed the runtime evaluation of messages. Second, he wanted a language that was easy to
learn and as similar to C as possible. He came up with Objective-C.

Objective-C is quite similar to the ANSI C language, but it introduces a single new type, one new operator,
and a few compiler directives. These additions are summarized in Table 4-2.

Table 4-2. New features in Objective-C

New feature Example Purpose

#import #import <Cocoa/Cocoa.h>
Includes a file if it has not been included
before. Similar to #include.

id id anObject; Pointer to an object.

[] [anObject aMethod];
Messaging operator; sends a message to an
object.

self [self display]; Pointer to the current object.

super [super display];

Pointer to the current object's parent class.
Allows a method implementation in a class
to call another method implementation in the
superclass. This is most commonly used
when overriding method implementations.

@interface
@interface MyClass:
NSObject

Marks the beginning of a class declaration.
Usually appears in a .h file.

@implementation @implementation MyClass
Marks the beginning of a class
implementation. Usually appears in a .m
file.

@protocol @protocol DrawProtocol
Marks the beginning of a protocol
declaration. Usually appears in a .h file.

@class
@class NSString,
NSDictionary;

Tells the compiler that a class will be
referenced before it is defined. Similar to
declaring a struct name * in ANSI C.

@end @end
Notes the end of an @interface,
@implementation, or @protocol
section.

+ +(id)alloc;
Introduces a class method in an
@interface or @implementation.

- -(id)init;
Introduces an instance method in an
@interface or @implementation.

@"" @"a string"
Used to create an unnamed NSString object.
Equivalent to [NSString
stringWithCString:"a string"].

4.2.1 Objects and Classes

An Objective-C object is a self-contained bundle of code containing data and procedures that operate on that
data. The data is stored in instance variables, and the procedures are called instance methods . For example,
an NSWindow object, which controls an on-screen window, contains a frame instance variable that stores
the window's location on the computer's screen. The NSWindow object is self-contained, or encapsulated, in
the sense that instance variables such as frame are not directly accessible from outside the object; you can
modify them only by invoking the object's methods. These methods assure that all access to instance
variables is carefully controlled, which helps ensure the integrity of the instance data. This whole process is
sometimes called data encapsulation.

An Objective-C class is a template that defines characteristics that are common to all objects that are
members, or instances, of that class. For example, the NSWindow class defines the instance variables and
methods that comprise NSWindow objects. The NSWindow class also defines special class or factory
methods for creating new objects.

Objective-C is different from other object-oriented languages, such as C++, in that Objective-C classes are
objects themselves - you can send them messages and pass references to classes as arguments.

When a class creates an object using a class method, it sets up memory for a new data structure containing
the instance variables defined by the class. It does not make a copy of the instance methods that the object
can perform. There is only one copy of the instance methods, and they are stored as part of the class's
definition in the computer's memory. These instance methods are shared by all instances of the class, which
makes memory usage more efficient. This also means that every member of a class responds to a message in
the same way. (This is not the case in some other object-oriented languages, where individual objects are
allowed to "specialize" a class.)

For example, suppose that an application requires two on-screen windows. The application will send two
separate requests (messages) to the NSWindow class to create two distinct NSWindow objects. Each
NSWindow object will contain its own class-defined data structure with its own copies of the instance
variables (e.g., frame). If one of the NSWindow objects is asked to perform the setFrame: action (which
changes the window's origin and size), the window object will go to the NSWindow class definition in
memory for the actual setFrame: code, but it will change only the frame instance variables in its own data
structure, not those in the other window on the screen.

Figure 4-2 shows an application with two windows on the screen; each window has a corresponding
NSWindow object inside the computer's memory, and each NSWindow object has its own set of instance
variables but shares the same methods.

Figure 4-2. An application with two on-screen windows

Inside the computer's memory, objects are implemented as data structures that contain the instance variables
as well as pointers to the objects' classes. It's the Objective-C runtime system that brings all this to life.

4.2.2 Methods and Messaging

An Objective-C method is invoked by sending the object a message.[1] Objective-C messages are enclosed
in square brackets, as follows:

[receiver message]

The receiver can be a class or an instance object, while message is a method name together with arguments.
We will refer to the entire bracketed expression [receiver message] as a message as well, although some
prefer to call it a message expression.

For example, suppose that you have an NSWindow object variable called aWindow. You can send
aWindow the message orderOut with this statement:

[aWindow orderOut];

The terms method and message may appear to be used interchangeably and to mean the same thing, but they
actually have slightly different meanings. A method is a procedure inside a class that's executed when you
send that class or an instance of that class a message. The method is executed when the object is sent the
corresponding message. Indeed, the same message sent to objects of different classes will usually cause
methods with different implementations to be invoked.

Although the phrase "sending a message" suggests concurrency, message
invocations are similar to traditional C-language function calls. If your program
sends a message to an object, that object's corresponding method has to finish
executing before your program can continue with other tasks.

One nice thing about Objective-C is that the same syntax is used for sending messages to both classes and
instances. For example, this code sends the message alloc to the NSWindow class:

[NSWindow alloc]

while this code sends the display message to the object pointed to by the object variable aWindow:

[aWindow display]

Messages can have arguments. For example, this code sends a message that has a single argument:

[aCell setIntValue:52];

This next line of code sends a message that has two arguments:

[myMatrix selectCellAtRow:5 column:10];

It tells the myMatrix object variable to select the cell of the matrix at position (5,10). The full name of the
message is selectCellAtRow:column:, which is what you get when you remove the arguments and the
spaces from the message invocation. The message name contains all of those letters and both colons.

By convention, class names usually begin with uppercase letters, while methods and instances begin with
lowercase letters. This convention is occasionally violated, however, when using nonstandard case improves
the readability of a program's source code.

4.2.3 The id Data Type

Objective-C adds one new data type, id, to the C programming language. An id variable is a pointer to an
object in the computer's memory. (The variable myMatrix in the previous section could have been defined
as an id variable.) You can think of an id as somewhat analogous to the ANSI C void * pointer, but
whereas a void * pointer can point to any kind of structure, an id variable can point to any kind of object.

There is an important difference between a void * pointer and an id - a function that receives a void *
pointer has no way of knowing what the pointer really points to. On the other hand, Objective-C objects
contain type information, so it is possible for an Objective-C function to examine an id and determine the
kind of object that it points to, or references.

Looking at an id pointer and figuring out what kind of object it points to is called introspection, and it
happens often when an Objective-C program runs. The Objective-C language uses introspection to
implement dynamic binding. When you send a message to an Objective-C object, the Objective-C runtime
system literally hands that message to the object and asks the object "Which function call do you want to run
in response?" Dynamic binding allows different objects to respond to the same message in different ways,
which gives Objective-C programmers a tremendous amount of power and flexibility.

Similarities and differences between void * pointers and the id data type are summarized in Table 4-3.

Table 4-3. Pointers to structures versus pointers to Objective-C objects

Characteristic Pointers to structures
Pointers to Objective-C

objects

Pointer type void * id

Sample declaration void *ptr; id obj;

Size of pointer on 32-bit PowerPC
microprocessor

4 bytes 4 bytes

Points to Any kind of structure Any kind of object

To determine the kind of object pointed
to

Impossible unless the type is
encoded inside the structure
itself

Send the object a message -
for example, [obj class]

In the next section, we'll continue our exploration of Objective-C by creating an actual class.

The Objective-C runtime is extremely fast. Although it is true that Objective-C
messages take somewhat longer to execute than do traditional C function calls or
C++ member function dispatches, the actual amount of clock time is measured in
microseconds - under normal circumstances, you should not be concerned with
the overhead of an Objective-C method invocation. Remember that the
Objective-C runtime that you are using can directly trace its lineage to a version
that ran on a Motorola 68030 computer running at 25 MHz! It was plenty fast
then; today's computers are at least 20 times faster.

Don't spend your time trying to "get around" the Objective-C runtime by looking
for ways to replace Objective-C messages with traditional function calls. Instead,
use the Objective-C runtime to your fullest advantage. It will save you time
developing your application, allowing you to concentrate on issues of design. If
your application seems to run slowly, this is almost certainly the result of poor
design, not of the minor overhead caused by Objective-C method dispatches.

4.2.4 A Simple Class Example

Suppose that a friend asks you to help debug a program that is supposed to help ninth-grade students in a
chemistry course by drawing pictures of molecules. To draw the atoms on the computer's screen, your friend
has created a class called Circle. Instances of this class will be used to draw the atoms on the computer's
screen. The class is called Circle, rather than Atom, because your friend hopes to reuse this class for a
graphics package that he is creating.

To perform the necessary functions, your friend has implemented in his program a variety of methods that
respond to messages. Instances of the Circle class respond to an Objective-C drawSelf message that causes
them to display themselves in the currently selected window. A second method, setRadius:, sets the circle's
size.

Let's look at these methods in practice. At part of the program your friend is debugging, there is a variable
called aCircle that points to a particular circle that is being acted upon. At this point in the code, the
program can force the circle to display itself with this excerpt of code:

[aCircle drawSelf];

Likewise, the radius of the circle can be set to 5.0 with this statement:

[aCircle setRadius:5.0];

There is no limit to the number of methods to which a class can respond. For example, your friend has

implemented a method that can be used to set the center of the circle to a particular (x,y) coordinate:

[aCircle setX:32.0 andY:64.0];

Methods can also return values. In this example, your friend has implemented a method that allows the
program to determine the x and y coordinates of the circle's center. For example:

printf("aCircle centered at %f,%f\n", [aCircle x],[aCircle y]);

The methods setX:andY:, x, and y are called accessor methods because they give you access to a variable
encapsulated inside the aCircle object. In this case, the methods x and y return floating-point numbers
(the values in the instance variables), and the output would be:

aCircle centered at 32.0,64.0

Accessor methods free the programmer using a class from having to know the details of how the class is
implemented. For instance, the Circle class might store the location of the circle as a center (x,y) and a
radius (r). Alternatively, the Circle class might store the location of the circle as the bounding box (x1,y1) to
(x2,y2), or as a bounding box with an origin at (x,y) and an extent (width,height). Each of these
representations has certain advantages and disadvantages to the programmer implementing the Circle class.
But as programmers using the Circle class, we don't really want to know how it is implemented - we just
want to be sure that it works properly.

When you create your own classes, you should first consider what kinds of
accessor functions the programmers using the classes will require. The initial
design of the class will often be dictated by the accessor methods, but if you use
well-defined accessor methods, you will be able to change the implementation of
your class without needing to make many other changes in your software.

4.2.5 Creating and Initializing Objects

Every computer language provides a facility for allocating and initializing new regions of memory. In ANSI
C, memory allocation is done with the functions malloc(), calloc(), and memset(). C++
allocates new objects with new. The Objective-C methods for allocating and initializing memory are alloc
and init.

The alloc method is a class method: you send the message alloc to a class, and the class allocates the
memory for that object and returns a pointer to the object that it just allocated. In our example, we will send

the alloc method directly to the Circle class.[2] Because the alloc method creates a new object, it is often
called a factory method .

The init method is an instance method; you send the message init to an object that was just allocated and
the object initializes itself. So your friend's program might have a bit of code in it that looks like this:

id aCircle; // declare object pointer

aCircle = [[Circle alloc] init]; // create aCircle instance

[aCircle setX:32.0 andY:64.0]; // set center of circle
[aCircle setRadius:10.0]; // set radius of circle
[aCircle drawSelf]; // display circle on screen

The aCircle = [[Circle alloc] init] statement sends the alloc message to the Circle class, asking
it to allocate memory (create) a new Circle object. The alloc method returns the id of an uninitialized Circle
object. This object is then sent an init method, causing it to be initialized. The init method returns the id of
the object that we are supposed to use. This id is usually the same as the id that the alloc method returned -
but it is not always the same, which is why it is important to nest the alloc and init methods.

Another feature of Objective-C is that it allows you to tell the compiler that a pointer will point only to an
object of a particular type of class (or one of its subclasses). For example, we could rewrite the previous
code in this way:

Circle *aCircle= [[Circle alloc] init];

[aCircle setX:32.0 andY:64.0]; // set center of circle
[aCircle setRadius:10.0]; // set radius of circle
[aCircle drawSelf]; // display circle on screen

This notation is called static (strong) typing. The advantage of static typing is that the compiler can perform
a limited amount of checking and can issue warnings if you seem to be sending a message to a class or an
instance of the class that is not implemented.

Because initializing an object and setting its instance variables is a common operation, most Objective-C
classes provide special-purpose initializers that perform both of these functions. Let's say the Circle class
has such an initializer, called initX:Y:radius:. Using this initializer, we might simplify the previous code
fragment to look like this:

Circle *aCircle = [[Circle alloc] initX:32.0 Y:64 radius:10];
[aCircle drawSelf];

There are many kinds of messages that you can send to an object. These messages are defined in the class
interface definitions.

4.2.6 The @interface Directive

To use a new class in your program, you need some way to tell the Objective-C compiler the names of the
class, its instance variables, its methods, and the superclass from which it is derived. This is done with a
class interface - a fancy name for an included file that is brought to the compiler's attention with the
#import directive.

The Connector class example we'll use here has a relatively simple class interface, shown in Example 4-2.

Example 4-2. The Connector.h class implementation file

/* Connector.h:
 * The Connector class interface file

 */

#import <Foundation/NSObject.h>

@interface Connector : NSObject
{
 id start;
 id end;
}
+ (id) connector;
+ (id) connectorFrom:(id)anObject to:(anObject);
- (id) init;
- (void) setStart:(id)aStart;
- (void) setEnd:(id)anEnd;
- (id) start;
- (id) end;
- (float) length;
- (void) drawSelf;
@end

The following line in Example 4-2 begins the class interface:

@interface Connector : NSObject

This line tells the compiler that we're about to define the Connector class and that the Connector class
inherits from the NSObject class. This means that each instance of the Connector class has a copy of the
same variables that the NSObject objects have, and that they respond to the same messages as other
NSObject instances. Connector objects also have additional variables and methods, as defined by the
programmer who created the class. We'll discuss inheritance in greater detail a bit later.

The next two lines in the example define the instance variables (start and end) that every Connector
object contains.

The block of lines that begins with plus signs (+) and minus signs (-) defines the class and instance methods
of the class. Those lines beginning with plus signs are class methods; you send the corresponding message
to the Connector class itself. Those beginning with minus signs are instance methods ; they are invoked by
messages sent to class instances. Following the plus or minus sign is a C-style cast that shows the type that
will be returned when the method runs. If no type is declared, (id) is assumed (it's the default).

You can have class and instance methods with the same name; the Objective-C
runtime system automatically figures out if you are sending a message to a class
or to an instance of that class.

Let's skip over the class methods for now and focus on the instance methods. The init method should be
familiar by now: that's the method that initializes an instance of the Connector class that's been allocated
with the alloc method. The methods setStart:, setEnd:, start, and end are all accessor methods: they allow
you to set and inspect the values of the Connector's instance variables. The length method returns a floating-
point value that corresponds to the distance between the centers of two objects. Finally, the drawSelf

method can be sent to the Connector to ask it to draw itself.

4.2.7 The #import Directive

Did you notice that Example 4-2 started with an #import preprocessor directive, instead of the more
traditional ANSI C #include? This was not a misprint.

The Objective-C #import statement is similar to C's #include statement, but with an improvement: if
the file specified in the #import statement has already been #import-ed, that file doesn't get #import-
ed a second time. This is an incredibly useful feature, because it avoids all sorts of "kludges" for which C
#include files are notorious. Here is an example of the type of kludge we mean:

/* kludge.h:
 * A kludgy C #include file
 */
#ifndef _ _KLUDGE_ _
#define _ _KLUDGE_ _
...
/* code that we wanted to include, but just once */
...
#endif

ANSI C #include files typically check to see whether some symbol (in this case, _ _KLUDGE_ _) is
defined and, if it is not, define the symbol and process the rest of the #include file. This methodology is
both inefficient and dangerous. It is inefficient because every #include file is typically processed
numerous times. It is dangerous because different files can inadvertently have the same _ _KLUDGE_ _
symbol defined, which causes one of the files to prevent the contents of the other file from being processed.

Objective-C's #import statement actually does what programmers want done - it reads in the contents of
the file if the file has not previously been read. With Objective-C, the previous example could be rewritten
as simply:

#import <kludge.h>

4.2.8 Destroying Objects

When you are done using a piece of memory, it is polite to return the memory to the computer so that it can
use that memory for other purposes. Well, it's more than polite - if you don't free memory when you're done
using it, your program will require more and more memory over time, and eventually it will run out of
memory and crash. Let's look at how that problem is handled in several programming environments:

C/C++

In ANSI C, memory that is alloc-ed with malloc() or calloc() is freed with the free()
function. C++ uses new to create new objects and delete to free them. If you are a programmer
who is using these languages, you need to manually keep track of all of your memory; when you no
longer need a piece of memory, it's your responsibility to free it. That's not much of a problem for
simple programs, but it can be a problem when objects are created in one part of your application
and used in another part; frequently, objects end up never being freed, or being freed multiple times.

If either of these things happens in a C or C++ program, the program will eventually crash.

Java

In contrast, the Java programming language does not have an explicit way to free memory. Instead,
it has a garbage-collection system that automatically frees objects when they are no longer
referenced anywhere in the running program. This eliminates the memory-management problems
inherent in C and C++, but it creates a new class of problems. Garbage collection is almost
impossible to implement efficiently, and it's easy for a programmer to make a relatively minor
mistake that prevents memory from ever being freed. Just ask any Java programmer!

Objective-C

Cocoa has a third approach to memory management that is a hybrid of these two approaches. When
you write a Cocoa program with Objective-C, each part of the application needs to notify the
underlying system when it is using an object and when it is finished with an object. The underlying
system maintains a reference count for each object, which keeps track of whether any other part of
your program is using the same object. When the final part of your program releases the object, the
object is automatically freed. From here on, we'll concentrate on this approach.

When Objective-C objects are initialized, they are given a reference count of 1. When you're done using an
Objective-C object, you send it a release message. This message causes the object to decrement its reference
count. If the reference count is decremented to 0, it's time to free the object. In this case, the Cocoa runtime
system sends the object a dealloc message.

The dealloc method is similar to C's free() function: send an object the dealloc message and the
memory associated with the object is freed - the object literally frees itself. But as a Cocoa programmer, you
will never send the dealloc message to an object. You just send release messages.

The reverse of the release message is the retain message. This is the message that you send to an object to
increment its reference count. If you create an Objective-C object that is going to be working with another
object, that first object should retain the id of the second object. This will prevent the second object from
being inadvertently dealloc-ed somewhere else in the program.

Let's see this process in action. Remember the Connector class from Example 4-2? The Connector class
draws a line from one object to a second object. What's particularly clever about the Connector class is that
it doesn't know where it's located - it simply knows the objects to which it is connected. It then asks each of
these objects their position to determine where it should draw its line.

To set up a connector between the objects circle1 and circle2, we might create a snippet of code that
looks something like this:

Connector *aConnector = [[Connector alloc] init];

[aConnector setStart:circle1];
[aConnector setEnd:circle2];

The implementation of the setStart: method might have a code fragment that looks like this:

start = [anObject retain];

When the retain message is sent, the reference count on the object pointed to by the variable anObject
will be incremented. The id of this object will then be assigned to the variable start, which is an instance
variable within an instance of the Connector class.

When the instance of the Connector class finishes working with this object, it will release it with a line of
code that looks like this:

[start release];

When the release method is called, the reference count is decremented. If it is 0, the object will
automatically be sent a dealloc message, which will cause the object to be freed. Remember, you should
never send the dealloc message yourself.

4.2.9 The @implementation Directive

Objective-C uses the @implementation directive to tell the compiler that the following methods are
method implementations. Implementations are stored in files that have the extension .m. The syntax of these
files is somewhat similar to the syntax of the class interface files. Example 4-3 contains an excerpt of a
sample Connector.m implementation file.

Example 4-3. The Connector.m file, our first try

/* Connector.m:
 * The implementation of the Connector class
 */

#import "Connector.h"

@implementation Connector

-(void)setStart:(id)anObject
{
 start = [anObject retain];
}

-(void)setEnd:(id)anObject
{
 end = [anObject retain];
}

@end

Following the @implementation directive are the actual class methods that are being defined. The two
methods in Example 4-3 each begin with a minus sign (-), indicating that they are instance methods. In fact,
these methods are accessor methods, designed to set the values of the start and end instance variables.

At the end of the class methods, there is a line containing the @end directive. This tells the compiler that
you are done defining methods.

When your program is running, the Objective-C system knows to run these snippets of code if the setStart:
or setEnd: message is sent to a Connector object (that is, an instance of the Connector class).

These methods are pretty good, but they both contain a significant bug: they can leak memory if they are
ever called a second time. This is because both the setStart: method and the setEnd: method discard the old
values for the start and end variables without first releasing them. So a better implementation for these
methods might look like this:

@implementation Connector

-(void)setStart:(id)anObject
{
 [start release];
 start = [anObject retain];
}

-(void)setEnd:(id)anObject
{
 [end release];
 end = [anObject retain];
}

@end

(Notice that the newly added code is highlighted in bold; this is a convention that we will use throughout
this book when we mix "old" code with "new" code to be inserted.)

Because the setStart: and setEnd: methods retain the object that is passed in as an argument, it is important
that this object be released when it is no longer needed. We can force the Connector to do this by overriding
the dealloc method in the Connector class:

-(void)dealloc
{
 [start release];
 [end release];
 [super release];
}

This method will release the variables start and end, then call [super release]. This expression passes
the release message to the superclass of the Connector class - that is, the class from which the Connector
class is derived. We don't yet know what that class is - that information is contained in the Connector class
interface definition.

What about the length method? This is a method that returns the length of the connector, or the distance
between the two objects. It's not an accessor method, because there is no length instance variable. In fact,
the Connector class has no idea where the connector object is actually located; this information is stored in
the objects pointed to by the start and end instance variables.

One way to implement the length method is like this:

- (float) length
{
 float dx = [start x]-[end x];
 float dy = [start y]-[end y];
 return sqrt(dx*dx+dy*dy);
}

As you learn to program in Objective-C, you'll discover that it is common to implement one method by
having the method send other messages.

4.2.10 The +alloc Method and the NSObject Root Class

In the previous example, there is an important method that the Connector class responds to that you do not
see in the interface file. That method is the +alloc method - the method that creates new objects (or
instances) of the Connector class. The plus sign (+) means that it's a class method - a method that is invoked
by a message you send to the Circle class itself, rather than to an instance of the class.

The Connector and Circle classes do not have their own +alloc methods. Instead, they inherit this method
from their common superclass, the NSObject class. We won't show the entire interface NSObject root class
because it's pretty big, but here is a small portion of it:

@interface NSObject
{
 Class isa;
}

+ (void)initialize;
- (id)init;

+ (id)new;
+ (id)allocWithZone:(NSZone *)zone;
+ (id)alloc;
- (void)dealloc;

- (id)copy;
- (id)mutableCopy;

...
@end

As you can see, an NSObject has a single instance variable called isa. This variable is of type Class, which
is a typedef for an ANSI C structure that contains the class information for this object.

Every[3] class in Cocoa inherits from type NSObject, and therefore every object contains this isa pointer to
its class type. Likewise, every class includes the class methods that are present in the NSObject class. The
most important of these class methods is +alloc, which allocates new objects of the class.

The NSObject class is part of Cocoa's Foundation class library. As this book progresses, we will explain
more aspects of the NSObject class and the class methods that it contains. (If you are curious, you can put
down this book now and read the documentation for the NSObject class.)

4.2.11 NSString, NSMutableString, and NSLog

Two other important Objective-C classes that you will use often are the NSString and NSMutableString
classes. These two classes allow you to construct and manipulate strings that are coded in standard 7-bit
ASCII, 8-bit Unicode, 16-bit Unicode, or the traditional Macintosh coding system. These classes provide for
practically everything you could ever want to do with a string, including copying it, performing string
searches, creating a substring, formatting printing, and more. The vast majority of Cocoa methods that
expect a string as an argument use an NSString, rather than a traditional ANSI C char *.

Because the NSString class is so widely used, Apple modified the Objective-C compiler to make it easy to
create these strings. Once again, it's done with the at sign (@). Whereas ANSI C uses a pair of double quotes
to create a byte array, Objective-C uses the at sign (@) followed by a pair of double quotes to create an
NSString. For example:

char *str = "this is an ANSI C string.";
NSString *str2 = @"this is a Cocoa string.";

Strings created with the NSString class are immutable, meaning that they cannot be changed. If you want to
be able to make changes to the string after you have created it, you need to use the NSMutableString class
instead. In this example, we will create a string and then append a message to it:

NSMutableString *str3 = [[NSString alloc] init];

[str3 appendString:"This is how you build "];
[str3 appendString:"a Cocoa String."];

The Cocoa NSString class has nearly a dozen different initializers that allow you to create an initial string
from another string, from traditional ANSI C strings, and even from printf-style formats. Consider these
examples:

NSString *str4 = [[NSString alloc] initWithString:@"a String"];

NSString *str5 = [[NSString alloc] initWithCString:"a C String"];

NSString *str5 = [[NSString alloc] initWithFormat:@"3+3=%d",3+3];

If you want to print the value of an NSString, you should use the NSLog() function. This function is
similar to the ANSI C printf function, but with three important differences:

● Instead of taking a char * as its first argument, it takes an NSString *.

● In addition to the standard printf formats, it understands %@ to print the object's description.[4]

● In addition to printing the requested format, it also prints the date and time.

Example 4-4 shows a small program that illustrates both string processing and the NSLog() function:

Example 4-4. A small example of NSString

#import <Cocoa/Cocoa.h>

int main(int argc,char **argv)
{
 int i;

 for (i=1;i<5;i++) {
 NSString *str1 = [[NSString alloc]
 initWithFormat:@"%d + %d = %d", i, i, i+i];

 NSLog(@"str1 is '%@'",str1);
 [str1 release];
 }
 return(0);
}

Type in this program and save it in a file called adder.m. You can then compile the program as follows:

localhost> cc -o adder adder.m -framework Cocoa
localhost>

Then you can run it:

localhost> ./adder
2002-02-13 08:27:10.752 adder[3004] str1 is '1 + 1 = 2'
2002-02-13 08:27:10.753 adder[3004] str1 is '2 + 2 = 4'
2002-02-13 08:27:10.753 adder[3004] str1 is '3 + 3 = 6'
2002-02-13 08:27:10.753 adder[3004] str1 is '4 + 4 = 8'
localhost>

4.2.12 autorelease and the NSAutoreleasePool Class

As a Cocoa programmer, you will frequently write methods that need to return an object. You'll also often
want to create and use objects without having to worry about destroying the objects when you're done.
Cocoa makes both of these tasks easy with its memory-management system.

Function calls that return objects or allocated blocks of memory are the bane of programming languages
such as C and C++. This is because it isn't always clear where the objects or memory should be deallocated.
Cocoa gets around this problem by having two different methods for releasing objects that have been
retained - the release method and the autorelease method.

When you send an object a release message, the object's reference count is immediately decremented. If the
reference count reaches 0, the object is sent a dealloc message. The autorelease message does not cause the
object's reference count to be decremented immediately. Instead, it causes the object to be added to a list of
objects in the current autorelease pool. Objects in the autorelease pool are sent a release message when the
current autorelease pool is deallocated.

Rules for alloc, release, and autorelease

Memory management under Cocoa may seem complicated at first. In time, however, you will
find that it is quite easy to use. Here are some rules that you will find helpful in deciding when
to use the messages retain, release, and autorelease:

● If part of your program (e.g., a class that you write) creates an object with an alloc
message, you must ensure that your program sends the object either a release or an
autorelease message.

● The accessor methods of your classes should release the old instance variables and then
retain the ids of any objects that are passed in as arguments.

● The dealloc method of your class should release all previously retained objects.

Typically, the Cocoa system creates an autorelease pool at the beginning of each pass through the event
loop; this autorelease pool is released when the event is done being processed. If you're writing a function or
a method that returns an object, you can autorelease and then return the object. The caller to the function
then has the option of either retaining that object itself, in which case the object will not be freed, or doing
nothing, in which case the object will be freed when event processing is over.

Let's see how this works in practice. Example 4-5 shows our NSString example rewritten to use the
autorelease pool (NSAutoreleasePool). The pool is created before the loop starts and is released when the
loop finishes executing.

Example 4-5. The NSString example rewritten to use the autorelease pool

#import <Cocoa/Cocoa.h>

int main(int argc,char **argv)
{
 int i;

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 for (i=1;i<5;i++) {

 NSString *str2 = [NSString stringWithFormat:@"%d + %d = %d",i,i,i
+i];

 NSLog(@"The value of str1 is '%@'",str2);
 }
 [pool release];
 return(0);
}

Notice that this line of code from Example 4-4:

NSString *str1 = [[NSString alloc]
 initWithFormat:@"%d + %d = %d", i, i, i+i];

was replaced with this line:

NSString *str2 = [NSString stringWithFormat:@"%d + %d = %d", i, i, i+i];

These lines are not equivalent. In the first case, the object pointed to by str1 is an allocated, initialized
object that has a string and a reference count of 1. In the second case, the object pointed to by str2 is an
allocated, initialized object with a reference count of 1, but the object's id has further been added to the
NSAutoreleasePool. This code is actually equivalent to the following:

NSString *str2 = [[[NSString alloc]
 initWithFormat:@"%d + %d = %d",i,i,i+i]
 autorelease];

That is, the single method stringWithFormat: replaces the methods alloc, initWithFormat:, and
autorelease. Many Foundation and Application Kit classes have class methods that return objects that have
been autoreleased.

Don't worry if this seems confusing. In subsequent chapters, we'll use the autorelease system so much that it
will be second nature to you by the time you're finished with this book.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.3 Tiny.m Revisited

Now let's take another look at Tiny.m. Here is the start of the Tiny.m program:

/* Tiny.m
 * A tiny Cocoa application that creates a window
 * and then displays graphics in it.
 */

Like any well-written program, Tiny.m begins with a set of comments describing what the
program does. Objective-C supports the standard ANSI C style of comments. That means
that anything enclosed between a /* and a */ is a comment. Anything on a line following a
double forward slash (//) is a comment as well. Thus:

/* This is a comment */
// This is a comment as well

The next line of Tiny.m imports the Cocoa header files for the Foundation and Application
Kit frameworks:

#import <Cocoa/Cocoa.h>

This statement brings in the Objective-C class definitions for the entire Cocoa framework,
including the Foundation and the Application Kit. Recall from earlier chapters that the
Foundation is a collection of tremendously useful classes for managing strings, arrays,
queues, and other traditional data structures. The Application Kit is the collection of classes
that are used to display the graphical user interface; often called the AppKit, this framework
includes the fundamental NSApplication, NSWindow, and NSView classes.

You might think that importing such a large number of files would
slow down the compilation process. In fact, it does not, because all
of the Cocoa headers are precompiled. As long as you #import
<Cocoa/Cocoa.h> before you do anything else in your
program, the required time is practically nil.

Every Cocoa program has one, and only one, instance of the NSApplication class. It's usually
created inside a function called NSApplicationMain() by sending sharedApplication
messages to the NSApplication class. In our example, we will create it in the function called
main().

The NSApplication object is the most crucial object in the program because it provides the
framework for program execution. The NSApplication class connects the program to the
Window Server, initializes the Quartz display environment for this application, and maintains
a list of all of the application's windows. The NSApplication object receives events such as
keypresses and mouseclicks from the Window Server and distributes them to the proper
NSWindow objects, which in turn distribute the events to the proper objects inside the on-
screen windows.

The NSWindow class is where the master control of your program's on-screen windows is
defined. For every window that your program displays, there is an associated instance
(object) of the NSWindow class inside the computer's memory. You can send messages to
NSWindow objects that make the associated on-screen windows move, resize, reorder to the
top of the window display list (placing themselves on top of the other windows), and perform
many other operations.

The NSView class is the class that plays the most central visual role in Cocoa applications.
Many of the classes in the AppKit inherit from the NSView class. NSView objects are
responsible for drawing in windows and receiving events. Each NSView object can contain
any number of NSView objects, called subviews. When a window receives a mouse event, it
automatically finds the correct NSView object to receive that event.

You can look at the interface (#include) file NSView.h in the /
System/Library/Frameworks/AppKit.framework/
Headers folder if you are interested in seeing the names and
arguments of the methods that the NSView class implements. In
fact, all of Cocoa's Application Kit framework classes have
interface (.h) files in the same folder. Because you will frequently
refer to its contents, you may want to create a shortcut to this folder
from your computer's root folder. For convenience, we'll use such a
shortcut - from now on we'll use the notation /AppKit/
filename.h to stand for the file /System/Library/
Frameworks/AppKit.framework/Headers/filename.
h.

You can also view the documentation for the Foundation and
AppKit frameworks on your hard disk using PB and on Apple's
web site.

The Objective-C program Tiny.m consists of a function called main(), which is called
by the operating system to start the program. The main() function in Tiny.m isn't very
complicated. Here it is:

int main()
{
 // create the autorelease pool
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // create the application object
 NSApp = [NSApplication sharedApplication];

 // set up the window and drawing mechanism
 setup();

 // run the main event loop
 [NSApp run];

 // we get here when the window is closed

 [pool release]; // release the pool
 return(EXIT_SUCCESS);
}

The first statement in the main() function creates an NSAutoreleasePool, which is used
by Cocoa's garbage-collection system.

After the autorelease pool is created, the program allocates an NSApplication object by
sending the alloc message to the NSApplication class (every Cocoa program must have
exactly one NSApplication object). This object is created with the sharedInstance method,
which automatically allocates an NSApplication object, initializes it, and adds the object to
the autorelease pool. The id of this object is then assigned to the global id variable NSApp.
Global variables are a rarity in Cocoa for style and software-engineering reasons, but it
makes sense to be able to send messages to the NSApplication object from any part of the
program because of its crucial role.

The name "NSApp" violates the convention that class names start
with capital letters while variables that point to objects start with
lowercase letters; alas, NSApp is a very special object!

The second statement in main() calls the function setup(), which contains the code
that makes the Tiny program unique. We'll discuss this function in detail in the next section.

The third statement, [NSApp run], is a message to the NSApplication object to run the
program's main event loop. The event loop is a system that usually sits idle, waiting to
respond to the user's pressing a key on the keyboard or moving or clicking the mouse. It can
also respond to timed and internal events. The event loop is part of the NSApplication class -

you never see it or have to do much with it. Unlike event loops in some other window
systems, Cocoa's are mostly automatic. The event loop terminates when the NSApp object is
sent an NSApp or stop: message; this usually happens when the user chooses the Quit menu
command. The NSApp message causes NSApp to call exit(), terminating the program.
The stop: message causes [NSApp run] to exit. This distinction can be useful for advanced
Cocoa programming, as we'll see later in this book.

The next line in Tiny.m frees the autorelease pool. Although you don't strictly need to do
this - the underlying operating system will automatically free those resources when the
application exits - it's good programming style to free memory that you no longer need.

4.3.1 Windows, Views, Delegates, and the setup() Function

Now it's time to look at the workhorse of Tiny.m, the setup() function. We'll try to
digest it in pieces. Here is the first part of the function:

NSWindow *myWindow = nil;
NSView *myView = nil;
NSRect graphicsRect;

// now create the window

graphicsRect = NSMakeRect(100.0, 350.0, 400.0, 400.0);

The first two lines set up local variables that will be used to hold the ids of the NSWindow
and NSView objects that will be created. They are initialized to nil, which is a pointer to the
empty object. (That is, it is a pointer to 0; messages sent to nil are ignored.) The third line
creates a local variable that will hold the location on the screen where Tiny.m will draw its
window.

The Cocoa Foundation provides three C typedefs for doing graphics (NSPoint, NSSize,
and NSRect), which are defined in the following code. If you're interested, you can find their
declarations in the file NSGeometry.h in the /System/Library/Frameworks/
Foundation.framework/Headers directory (we'll refer to this file as /
Foundation/NSGeometry.h).

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

typedef struct _NSSize {
 float width; /* should never be negative */
 float height; /* should never be negative */
} NSSize;

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

The function NSMakeRect() is simply a convenient shorthand for creating a rectangle
that has a particular origin and size. Instead of using this:

graphicsRect = NSMakeRect(100.0, 350.0, 400.0, 400.0);

we could have used:

graphicsRect.origin.x = 100.0;
graphicsRect.origin.y = 350.0;
graphicsRect.size.width = 400.0;
graphicsRect.size.height = 400.0;

The graphicsRect contains the details of where the new window will be located and how
big it will be. The window itself gets created in the next Tiny.m program line, when the
alloc message is sent to the NSWindow class (recall that alloc is a class method). The new
instance object is then initialized within the nested initWithContentRect:styleMask:
backing:defer: message. The id of the new NSWindow object that is created is assigned to
the variable myWindow:

myWindow = [[NSWindow alloc]
 initWithContentRect: graphicsRect
 styleMask: NSTitledWindowMask
 |NSClosableWindowMask
 |NSMiniaturizableWindowMask
 backing: NSBackingStoreBuffered
 defer: NO];

One of the many nice features of Cocoa's Objective-C interface is that arguments are labeled,
which makes Objective-C programs easy to read. In the example above, the four arguments
are initWithContentRect:, styleMask:, backing:, and defer:. After each colon are the
arguments themselves.

Let's look at each of the arguments:

initWithContentRect: graphicsRect

Specifies where the window will be created and how large it will be. In this case, the
location of the lower-left corner is at (100.0,350.0) and the size is 400 pixels square.

(The screen origin - the point (0.0,0.0) - is the pixel at the lower-left corner of the
Mac OS X screen.)

style: NSTitledWindowMask|NSClosableWindowMask| NSMiniaturizableWindowMask

Tells the Window Server to display the window with a title bar, a close button, and a
miniaturize button. (The vertical bar is the Objective-C bitwise OR operator,
which causes the bits within the numerical constants to be OR-ed together.) Most
Mac OS X windows have title bars that contain titles. To set up a window without a
title bar, omit the NSTitledWindowMask argument. These and other window
attributes are defined in the file /Appkit/NSWindow.h.

backing: NSBackingStoreBuffered

Specifies which kind of backing to use. Windows can have three kinds of backing:
retained, buffered, or none. Retained backing means that visible portions of the
window that a program draws are written directly to screen memory, but that an off-
screen buffer is set up to retain nonvisible portions that are obscured by other
windows. Thus, if the window is covered by another window and then exposed, the
Window Server can redraw it without any work on the part of your program.
Buffered windows use the off-screen buffer as an input buffer, and the buffer's
contents are transferred to the screen when the window is flushed. Windows with no
backing have no off-screen memory; if they are covered and then exposed, they must
be redrawn, and might momentarily flash white while that redrawing takes place.
Buffered windows are most common in Cocoa.

defer: NO

Tells the Window Server that we want our window created right away, rather than
later.

Pass Small Structures, Not Pointers to Structures

Cocoa frequently passes entire structures on the stack as arguments to functions
and methods, whereas other frameworks more often will pass pointers to
structures. In the previous example, for instance, the entire graphicsRect
structure, rather than a pointer, is passed.

Even though it's faster to push a pointer on to the stack than to push the entire
structure, once the structure is on the stack, the called subroutine can access the
structure's element very quickly. By contrast, if a pointer is pushed onto the stack,
referencing each element requires a pointer de-reference.

If the called function is going to access every element of the structure, it is

considerably faster to push the entire structure onto the stack. And as added
benefits, passing complete structures on to the stack results in cleaner code, eases
memory management, and improves threading.

Remember, all of these arguments make up a single Objective-C method, whose proper name
is initWithContentRect:styleMask:backing:defer:.

Unlike in C++, you cannot leave off an argument and get a default value!

After the long myWindow statement executes, the myWindow variable contains the id of the
window created with the attributes provided. We can then send messages to the window by
sending messages to that id, as we do in the next statement. The following message sets the
window's title to the string "Tiny Application Window". The at-sign directive, @"", tells the
compiler to create an NSString object with the text "Tiny Application Window", rather than
creating a char * string:

[myWindow setTitle: @"Tiny Application Window"];

The next four statements in Tiny.m create an object of the NSView class and set up the
window for drawing. We need to describe the NSView class before we can discuss these
statements thoroughly.

4.3.2 Views

The NSView class and its subclasses are the primary mechanism by which Cocoa users and
applications interact. To draw on the screen, an application invokes NSView instance
methods to establish communication with the Window Server and then sends the NSView
instance Quartz drawing commands. Going the other way, the AppKit will send a message to
an object of the NSView class when the user does something which creates an event, like
clicking the mouse or pressing a key on the keyboard.

NSView objects represent rectangular chunks of screen real estate inside a window. Many of
the interesting Cocoa objects - sliders, buttons, matrices, and so on - are instances of NSView
subclasses. Programmers use the NSView class by subclassing it. NSView is an abstract
superclass; it contains the functionality that many other classes need and therefore inherit,
but instances of the NSView class itself are rarely used.

One of the most important methods in the NSView class is drawRect:, which is invoked
when its containing view (or window) wants your view to draw itself. (Cocoa invokes the
drawRect: method automatically for you.)

For this example, we created a subclass of the NSView class called DemoView. This
subclass adds no instance variables to what it inherits but it does override NSView's

drawRect: method with a new one that draws the fancy design shown in Figure 4-1. Here is
the interface for the DemoView class:

@interface DemoView : NSView
{
}
- (void)drawRect:(NSRect)rect;
@end

This class is referenced by the last four lines of the setup() function, as follows:

// create the DemoView for the window
myView =[[[DemoView alloc] initWithFrame:graphicsRect]
 autorelease];
[myWindow setContentView:myView];
[myWindow setDelegate:myView];
[myWindow makeKeyAndOrderFront: nil];

The first of these four statements contains nested messages that create and initialize the
DemoView object called myView. The second statement sets up the myView that we've just
created as the content view of the NSWindow object that we created earlier. Every window
contains precisely one content view, which represents the area of the window that is
accessible to the application. That is, the content view contains the entire window except the
title bar, border, and scroller (if present). The setContentView: method also changes the
offset and the size of the myView object that we created, so that it is precisely aligned with
the window.

The third statement, [myWindow setDelegate:myView], delegates to the myView object the
responsibility of responding to certain messages sent to the myWindow object. One such
message is windowWillClose:; we'll see how it works shortly.

The final statement sends the makeKeyAndOrderFront: message to myWindow. This
message forces myWindow to be displayed in front of (on top of) all the other on-screen
windows and makes it the key window, or the window that accepts keyboard events. The
argument nil doesn't do anything here; it's just a placeholder. The reason that the
makeKeyAndOrderFront: method contains the argument is so that it can be used with IB.

As we noted earlier, the makeKeyAndOrderFront: message in
this example does not result in the window's being brought to the
front of the view screen. We think that this is because the message
is sent before the application's main event loop is running. One day
we hope to have a solution to this problem. If you find the answer,
please send it to us and we'll post it on the O'Reilly web site.

4.3.3 Drawing with Quartz Inside a View Object

The actual drawing of the fancy pattern shown in Figure 4-1 happens in the DemoView
drawRect: method. The drawing code in this example is not optimized in any way, but for
now it will do.

The [myView drawRect:] message is invoked (called) automatically when the DemoView is
first displayed on the screen. This method executes the following code:

#define X(t) (sin(t)+1) * width * 0.5
#define Y(t) (cos(t)+1) * height * 0.5

- (void)drawRect:(NSRect)rect
{
 double f,g;
 double const pi = 2 * acos(0.0);
 int n = 31;

 float width = [self bounds].size.width;
 float height = [self bounds].size.height;

 // clear the background

 [[NSColor whiteColor] set];
 NSRectFill([self bounds]);

 // these lines trace two polygons with n sides
 // and connect all of the vertices with lines

 [[NSColor blackColor] set];

 for (f=0; f<2*pi; f+=2*pi/n) {
 for (g=0; g<2*pi; g+=2*pi/n) {
 NSPoint p1 = NSMakePoint(X(f),Y(f));
 NSPoint p2 = NSMakePoint(X(g),Y(g));

 [NSBezierPath strokeLineFromPoint:p1 toPoint:p2];
 }
 }
}

The variables width and height are set up to be the width and height of the myView
object. We get these values by invoking the bounds method on the current object ([self
bounds]). This returns the exact size of the area in which the myView object is allowed to

draw.

Because the coordinate systems of NSViews can be scaled and
translated, Cocoa provides two methods for determining the current
size of each NSView. The message [self bounds] returns the size
of the NSView in its own coordinate system, whereas the message
[self frame] returns the size of the NSView in the coordinate
system of its containing view. If this sounds confusing, don't
worry: we'll explain coordinate systems in considerably more detail
in Chapter 14 and Chapter 15.

The next statement sets the current drawing color to whiteColor. Then a built-in Mac OS
X function, NSRectFill(), is called that fills the rectangle returned in [self bounds]
with a white background. This has the effect of making the entire myView area white. We
then change the current drawing color to blackColor before drawing the lines of the
pattern.

The #define statements create two macros that will be used for translating from polar to
rectangular coordinates. Once these two functions are defined, we create an inner loop and an
outer loop that connect all of the lines. To draw the lines we use the NSBezierPath class,
which has a collection of class methods for drawing lines, circles, and Bezier paths.

This completes our discussion of the Tiny application. Don't worry if you don't understand all
these statements (especially those starting with the macros) at this point.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.4 Summary

In this chapter, we wrote a program that used Objective-C but not IB. In Chapter 3, we
were limited by the tools that IB provided us: there was no way to let the programmer
create loops, do math, or perform most other tasks that we associate with "programming" a
computational engine. We did lots of programming in this chapter, but we had to think a lot
about the mechanics of the program that IB supplied for us in Chapter 3.

The real power of the Cocoa programming environment is that it lets you combine IB (and
PB) with Objective-C, taking advantage of what each one does best: IB for creating the
interface and making connections that lead to message passing, and Objective-C for
creating new classes and for the actual writing of the computational engine. Throughout the
rest of this book, we'll learn how to create powerful applications while writing a relatively
small amount of code.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.5 Exercises

1. Rework the DemoView class in Tiny.m so that the program draws a series of
concentric squares or circles.

2. Read the header files for /AppKit/NSColor.h and modify DemoView so that
the drawing appears in many different colors.

3. Read the header files for /AppKit/NSStringDrawing.h and add text to the
DemoView display.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 4. An Objective-C ApplicationWithout Interface Builder

4.6 References

1. Objective-C:

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/AppendixA/

2. Object-Oriented Programming: An Evolutionary Approach, by Brad J. Cox and
Andrew J. Novobilski (Addison Wesley)

3. Objective-C: Object-Oriented Programming Techniques, by Lewis J. Pinson and
Richard S. Wiener (Addison Wesley)

http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/AppendixA/

Book: Building Cocoa Applications: A Step-by-Step Guide

Part II: Calculator: Building a Simple Application

Part II, Chapter 5 through Chapter 9, is focused on building a simple
application - a calculator - which we extend piece by piece through these
chapters.

● Chapter 5
● Chapter 6
● Chapter 7
● Chapter 8
● Chapter 9

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part II: Calculator: Building a Simple Application

Chapter 5. Building a Project: A Four-Function
Calculator

In this chapter, we'll build a simple Calculator application with four functions: add,
subtract, multiply, and divide. When we're done, our Calculator will contain the menu and
window shown in Figure 5-1. In the process of building the Calculator, we'll learn about
Interface Builder, connections, and some of the commonly used Cocoa Application Kit
(AppKit) classes.

Figure 5-1. Calculator application window and menu bar

We've chosen to build a calculator as the first "real" application in this text for several
reasons. First, calculators are familiar; we've all used one, and we sort of know how they
work. (When creating an application, the first thing to understand is the problem you need
to solve.) Second, calculators are useful. As programmers, we're constantly having to do
silly little things like add two numbers together or convert a number from decimal to
hexadecimal (the hex part will be built in Chapter 7). It's a tool that you can put to work
after you build it.

More importantly, a calculator is a good starting point for budding Cocoa developers. In
subsequent chapters, we'll use the Calculator as an infrastructure for learning about Cocoa
graphics, printing, multiple windows, file handling, and many other features.

Creating your own calculator puts you in charge of its design. After all, there are many
kinds of calculators: some are scientific, some are financial, and some are just simple four-
function calculators. Our Calculator will let you key in the sequence "3+4=" by clicking
four buttons in a window. The Calculator will display (in order) 3, 3, 4, and 7 in a text
output area. If you don't like the decisions we've made and want to change or add functions
and features, go right ahead! Our aim is to give you the know-how to create your own
applications.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.1 Getting Started: Building the Calculator Project

Follow these steps carefully to get started building your Calculator project:

1. Make sure that the Project Builder and Interface Builder icons are in your dock,
then launch PB from your Dock.

2. Choose Project Builder Hide Others to simplify your screen.

3. Choose PB's File New Project menu command to begin the process of
creating a new project (see Figure 5-2). The New Project Assistant dialog opens, as
shown in Figure 5-3.

Figure 5-2. Choose PB's File New Project command to create a new project

Figure 5-3. New Project Assistant in PB

4. Make sure that Cocoa Application is highlighted, as shown in Figure 5-3, then click
Next. The New Cocoa Application dialog shows up, as shown in Figure 5-4.

Figure 5-4. Providing the name and location for a project

5. Type "Calculator" in the Project Name field of the New Cocoa Application panel,
as shown in Figure 5-4.

6. Hit the Tab key to fill in the second line, as shown in Figure 5-4, and click the
Finish button.

PB's main window for the Calculator project opens; it should look similar to the window in
Figure 5-5.

Figure 5-5. Main window in PB

The main window in PB contains several buttons. The four buttons that look like tools
(hammer, whiskbroom, etc.) at the left of the window just below its title bar are "action"
buttons that can build, clean, run, and debug your project. The five disabled (dimmed)
buttons near the top-right corner of the window are used with the debugger (as discussed in
Section 2.4.1 in Chapter 2). Going from left to right, these debug buttons allow you to
pause execution, continue execution, step over the method or function call, step into the
method or function call, and step out of the current method or function call. Descriptions of
the buttons pop up as you move the mouse over them.

The rest of the PB main window is divided into two sets of tabbed views. The vertical set
of tabs controls what is seen in the lefthand pane of the window.

This pane (or view) can display one of five different types of information:

● The files in your project
● The classes in your project
● The bookmarks that you have set in your project
● The build targets
● Any debugging breakpoints that you may have set

The horizontal tabs near the righthand side of PB's main window display either the Find
feature, the Build output, the Run (logged) output, or the Debugger output in the pane that
opens above the tabs. Finally, the lower-right corner of PB's main window is where you
can browse or edit a file. The first file that is displayed when you create a new project is
the Project Builder Release Notes. Normally, you would edit your source code or display
Help or AppKit headers in this (text) pane.

When you first see PB's main window, the Files tab is highlighted and groups for five types
of files (Classes, Other Sources, etc.) associated with your project are shown. You can
click the little gray disclosure triangles next to the labels in this Groups & Files pane to
show the names of the files in your project. We'll discuss these different file types later, in
Section 5.10.

7. Click the disclosure triangle to the left of the Resources label in the Groups & Files
pane to reveal the MainMenu.nib and InfoPlist.strings files, as shown
in Figure 5-5.

The checks next to these files in the target column at the left of PB's main window
mean that the files are part of the Calculator target.

8. Double-click the MainMenu.nib file icon in PB's main window.

IB will launch and display the MainMenu.nib interface that was automatically created
by PB when we created a new Cocoa application. This interface includes a main menu
titled "MainMenu" and a main window titled "Window". An associated Nib File window is
also displayed in the lower-left corner of the screen, below the new menu.

9. To simplify the screen, choose Interface Builder Hide Others.

Your screen should contain the same objects as the one shown in Figure 5-6
(although probably not in the exact same location, and the Palettes window may
show a different palette).

Figure 5-6. IB with the MainMenu.nib file for the Calculator project opened

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.2 Building the Calculator's User Interface

The MainMenu.nib file created by PB and opened in IB above is called, aptly enough, a
nib file (nib stands for NeXT Interface Builder - a holdover from the pre-Apple life of this
development environment). A nib file stores information about all of the user interface
objects in your program, including the windows, controls, and menus; the connections
between those objects; and some other objects that IB knows about. When you compile and
link the application you are building, the application's nib file (or files, if the program uses
more than one) gets bundled together with the program's executable code and stored in a
package, or app wrapper, folder. This folder has a .app extension and looks like an
executable application in the Finder.

The nib files are stored in an undocumented Cocoa proprietary binary format. Fortunately,
it doesn't need to be documented - all of the nib-file management is done by IB. IB is
basically a nib editor: when it opens a nib file, it reads the specifications and displays the
associated objects. After you make your modifications to the program, IB writes out a new
nib file, replacing the old one.

Now that we've created the project, we'll add and customize the windows, panels, and
menus needed for our Calculator's user interface.

5.2.1 Customizing the Main Window

The main window in the Calculator's interface, currently titled "Window", doesn't look
anything like a calculator: it's the wrong shape, it shouldn't have a resize handle, and it
doesn't even have the right name! Fortunately, these are all properties that we can easily
change by using IB's NSWindow Info dialog.

To see this Info dialog for a particular window, you must first select the window by either
clicking in its background or clicking on its icon in the Nib File window's Instances pane.
If you click on an object (e.g., a button) inside a window object in IB, the button, not the
window, will be selected.

In general, the title and contents of IB's Info dialog change in response to which object in
the interface is selected. When the Info dialog changes in response to a selection, you may
still have to choose which aspect of the object you want to inspect: its attributes, its
connections, or something else. You can make this choice by dragging to it in the Info
dialog's pop-up menu or by typing Command-1 for Attributes, Command-2 for
Connections, and so on.

Next, we'll go through the steps to customize our Calculator's window in IB.

1. Select the newly created empty window in IB by clicking in its background.

2. Choose Tools Show Info to display the NSWindow Info dialog. If necessary,
press the pop-up list button in the NSWindow Info dialog and select Attributes.
(You can accomplish both of these actions by simply typing Command-1.)

The NSWindow Info dialog should now look like the one shown on the left in
Figure 5-7.

Figure 5-7. NSWindow Info dialog before (left) and after (right) changes

3. Change the title from "Window" to "Calculator" and hit Return.

4. Turn off the Close and Resize attributes in the NSWindow Info dialog's Controls
box by clicking their checkboxes so the checkmarks disappear (see the resulting
Info dialog on the right side of Figure 5-7 - the arrows indicate where the changes
were made).

Although the red close button and resize handle do not disappear from the
Calculator window in IB, they will no longer be present when the application is
running.

5. Resize the Calculator window so that it is about three inches square.

5.2.2 Adding Controls in a Window

Next, we'll drag the buttons and text display area that the Calculator application will need
from IB's Palettes window into the main Calculator window:

6. Make sure the Cocoa-Views palette is visible by clicking the Views button at the
top of IB's Palettes window.

7. Drag an NSTextField object from the Palettes window and drop it near the top-right
corner of the Calculator window. Use the blue guidelines to position the object. (If
you release the dragged object when it is near a guideline, the guide will actually
grab and align the object, helping make your layout visually attractive.)

When you are finished, your window should look like the one shown on the left in
Figure 5-8. A border in the current selection color surrounds the NSView object
that is ready to accept the new NSTextField.

Figure 5-8. Calculator window with new text field (left) and button positioned
using guidelines

8. Drag the NSTextField's left-middle selection handle to the left to widen the
NSTextField object so that it is almost the width of the Calculator window, as
shown in the window on the right in Figure 5-8.

9. Drag an NSButton object from the Palettes window and drop it in the lower-left
corner of the Calculator window, as shown in the window on the right in Figure 5-
8. Use the blue guidelines.

10. Double-click the center of the NSButton object, change the text "Button" to the
digit "0", and hit Return.

11. Make the width of this button smaller by clicking the button once and then

dragging the button's right-middle handle to the left until the button stops getting
smaller. (When necessary, you can make buttons even smaller using the NSButton
Info dialog.)

12. Make sure the cursor is positioned in the window, and press the Option key on the
keyboard to see the layout information, as shown in the window on the left in
Figure 5-9. Note that the guidelines gave us a 20-pixel buffer between the button
and each edge near it. Release the Option key.

Figure 5-9. Layout information (left) and creating an NSMatrix of NSButtons (right)

Next, we'll create the Calculator's keypad, using the great power of IB!

13. While pressing the Option key on the keyboard, drag the upper-right handle of the
NSButton up and to the right. Release the mouse button when there are four rows
and three columns of buttons, as shown in the window on the right in Figure 5-9.

Congratulations - you've just created a matrix (NSMatrix) of buttons (NSButtons)! The
NSMatrix is one of the classes provided by the Cocoa Application Kit. An NSMatrix object
is a two-dimensional array containing other objects that are subclasses of the NSCell class.

Every Cocoa NSControl subclass, including NSButton, NSSlider, and NSTextField, has an
associated NSCell subclass (e.g., NSButtonCell, NSSliderCell, and NSTextFieldCell).
These cell objects do the actual drawing of the controls that we put into the window. When
you drag a button, slider, or text field off the IB palette and into your window, you are
actually dragging out two objects - an NSControl and a corresponding NSCell.

You can also display NSCell objects in a rectangular NSMatrix. As before, the NSCell
objects handle the drawing. When you drag one of the resizing handles with the Option key
pressed, IB automatically converts the NSControl and its associated NSCell into an
NSMatrix and a whole set of NSCell objects.

The NSControl object is used for handling events from the keyboard or mouse. IB hides

this split between the NSControl and NSCell from us and makes the control and its
associated cell look like a single object. This is often a source of confusion for
programmers new to Cocoa.

Cells and Controls

You may wonder why Cocoa uses this combination of objects - an NSCell and
an NSControl - rather than a single object. You may also wonder why the
NSCell inherits directly from NSObject and is not a subclass of NSView.
Certainly, it can be more complicated to implement an NSCell class because it is
not a view: NSCells are commanded by a view to draw themselves at a particular
location. The NSCell/NSControl division dates back to Cocoa's early days, when
it ran on 25-MHz 68030 microprocessors, and was developed by Cocoa's
designers because NSViews require a floating-point coordinate transformation,
while NSCells do not. Drawing a matrix of buttons, such as a calculator pad,
could have required literally a thousand floating-point calculations if NSCells
were full-fledged views, each with its own coordinate system. So the division is
largely a performance optimization. Once the optimization was developed,
however, other advantages were discovered. For example, because the handling
of events is separated from the drawing on the screen, with a clear partition
between the two, it is easy to change one of these behaviors without affecting the
other. This is not the case with other application frameworks.

Now we'll resize the NSMatrix as a whole to fit the area we want:

14. Drag the right-middle handle of the NSMatrix to the right so that the NSMatrix is
almost the same width as the NSTextField. This time, all 12 of the buttons titled
"0" will get wider simultaneously. (Don't worry about being exact at this point in
the interface.)

5.2.3 NSMatrix Dragging Options in IB

When you drag a handle on a matrix object, one of three things can happen, depending on
which modifier key is pressed (we saw the first two of these in the previous example):

None

Changes the size of all cells in the matrix

Option (Alt)

Changes the number of cells in the matrix

Command (Apple)

Changes the spacing between cells

These values can also be changed using the NSMatrix Info dialog.

The buttons in the NSMatrix we created will be used to represent digit keys on our
Calculator, and thus we'll change their names from "0" to the 10 decimal digits (and disable
the remaining 2 buttons). We also need to set some less obvious attributes of the buttons,
called tags, to make the buttons work properly. In order to explain how tags work and help
you better understand why we make certain choices while creating an interface, we'll
postpone finishing the interface for now to discuss the Objective-C class that we'll create to
handle the button clicks.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.3 Building the Calculator's Controller Class

It's time to start thinking about the Objective-C object that will control our Calculator - that
is, respond to button clicks, calculate the values that the user wants, and display the results.
By convention, this kind of object, which performs behind-the-scenes work and
communicates with the user interface, is called a Controller.

Controllers generally don't have main event loops; instead, they perform actions in
response to events that are received and interpreted by other objects. A good rule of thumb
is to place as little code in your Controller as is necessary for it to do its job. If it is possible
to create a second Controller that is used only for a clear, particular purpose, do so - the
less complicated you make your application's objects, the easier they are to debug. In
addition to controlling the overall flow of the application, Calculator's Controller will
contain the code to perform the basic arithmetic and thus can be thought of as the
computational engine or back end (albeit a very simple one) of the application.

5.3.1 Designing the Controller Class

Cocoa doesn't provide you with a Controller class - it's up to you to write one for your
application. (IB and the AppKit are fabulous, but they can't do everything for you - at least
not yet!)

Before you start coding, it's a good idea to sit down and think about your problem. What
does the Controller have to do? What kind of messages will it need to respond to? What
kind of internal state does it have to keep in order to perform those functions? Recall that
we want our Calculator to allow a user to type in the sequence "2*5=" by clicking four
buttons in a window and to display (in order) 2, 2, 5, and 10 in a text output area. Thus, for
our Calculator, the answers are fairly straightforward.

Here's what our Calculator must do:

● Clear the display and all internal registers (value holders) when a "clear" button is
clicked.

● Allow the user to click a digit button on the numeric keypad and display the
corresponding digit immediately after it is typed.

● Allow the user to click a function button (e.g., "add", "subtract").
● Clear the display when the user starts entering a second number.
● Perform the appropriate arithmetic operation when the user presses the "equals"

button or another function button.

Our Calculator must also maintain the following state to perform these functions:

● The first number entered
● The function button clicked
● The second number entered

It turns out that to work properly, our Controller object needs two more pieces of
information:

● A flag that indicates when a function button has been clicked - if the flag is set, the
text display area (which we'll call readout) should be cleared the next time that a
digit button is clicked, because the user is entering a second number

● The location in the readout text display area where the numbers should be
displayed

These bullets indicate that we are using Objective-C to create a simulation of a real,
physical calculator. That's what object-oriented programming is often about: constructing
progressively better simulations of physical objects inside the computer's memory, and
then running them to get real work done. When the simulation is functionally
indistinguishable from the real-life object being simulated, the job is finished.

5.3.2 Creating the Controller Class

Every Objective-C class, except NSObject, is based on (and inherits from) another class.
The NSObject class itself is the most fundamental Objective-C class, because it defines the
basic behavior of all objects and is at the root of all inheritance hierarchies. Because we
don't need any special behavior in our Calculator other than what is already defined in the
AppKit, our Controller class will be a subclass of NSObject.

We'll start building our Controller class by subclassing it from the NSObject class in IB.

1. Click the Classes tab in IB's Nib File window to view the AppKit's object
hierarchy.

2. Scroll to the far left in the Classes pane using the horizontal scroller at the bottom
of the Nib File window, and then select the NSObject class by clicking it. (See
Figure 5-10.) You can also rapidly jump to the NSObject class by typing the word
"NSObject" into the Classes pane's Search field.

Figure 5-10. NSObject (root) class (left) and new Controller classes (right)

The NSObject class name is displayed in gray, which means that you can't change any of
its properties or built-in behaviors without subclassing it. So that's what we'll have to do.

3. Click IB's Classes menu item at the top of the screen, then choose Subclass
NSObject, as shown in Figure 5-11 (or simply hit the Return key when NSObject is
highlighted).

Figure 5-11. Classes menu in IB

4. A new class called MyObject will appear under NSObject in the class hierarchy.

5. Change the name from "MyObject" to "Controller", and hit Return. (See Figure 5-
10.)

You've just created a new Objective-C class called Controller. Right now it doesn't do
anything different from the NSObject class. Next, we'll give the Controller class some
custom behavior by adding some outlets and actions.

5.3.3 Outlets and Connections

Cocoa uses a powerful system known as "outlets and connections" to give you an easy way
to send messages between user interface objects such as windows, buttons, other controls,
and your own custom objects. An outlet is simply an instance variable in an Objective-C
class that has the type id and thus can store a pointer to an object. The value of this instance

variable is usually set to the id of another object in the nib - that is, a user interface object.
Thus, outlets normally point to interface objects.

When an outlet is set to store the id of another object in the nib file, IB calls this a
connection. Cocoa maintains connections for you. When object specifications are saved in
a nib file, the connections you set up between them in IB are saved as well. These
connections are automatically restored when the nib file is loaded back into IB.

Outlets can also be given a specific type. When you do so, IB will give you a warning if
you attempt to connect the outlet to an object that is not of that type (or a class of that
type).

For example, suppose that you have two object specifications in a nib file: objects A and B.
Suppose also that object A contains an outlet, or id variable, that points to object B. When
Cocoa loads this nib file, it will first create new instances of object A and object B, then
will automatically set the outlet in object A to point to object B; that is, it sets the outlet A
to be the id of object B.

Outlets therefore give you an easy way to track down the ids of objects that are
dynamically loaded with nib files. They are the mechanism that Cocoa provides for wiring
up an interface in IB without writing any code.

5.3.4 Adding Outlets to an Object

There are two ways to add outlets to a class: either by entering them in IB's Class Info
dialog, or by hand, using an editor to type them into the class interface (.h) file for your
class. In the latter case, you can choose IB's Classes Read Files menu command to
inform IB about the outlets that exist for the class. We'll see how to add outlets using IB in
this chapter and by hand in the next chapter.

After adding an outlet, you use IB to initialize where it points. You do this by setting up a
connection from the object containing the outlet to the object to which you want it to point,
and then choosing the outlet from the list of outlets in IB's Connections Info dialog. When
you make a connection between an outlet in an object and another object in IB, IB sets the
instance variable in the first object to the id of the object to which it is connected. That's
all!

In the following steps, we'll add and initialize an outlet called readout in IB.

6. If necessary, select Controller in the Classes pane of IB's Nib File window.

7. Now type Command-1 to display IB's Attributes Info dialog for the Controller
class. The Info dialog window should be titled "Controller Class Info".

8. Make sure that the Objective C radio button is selected in the Attributes Info
dialog, as shown in Figure 5-12.

9. Click the Add button at the bottom of the Controller Class Info dialog, and the
outlet called myOutlet will appear.

10. Change the name of this outlet to "readout" by typing the new name followed by
Return.

If you make a mistake, you can double-click the outlet to change the name again. You can
also click the Remove button to remove an outlet. When you're done, the Class Info dialog
should look like the one on the right in Figure 5-12.

Figure 5-12. Creating an outlet in the Controller Class Info dialog

We'll eventually set the readout Controller outlet to point to the Calculator's text display
area (NSTextField) object in the Calculator window. Then the Controller will be able to
send messages to the NSTextField via the outlet.

Next, we'll add action methods to the Controller class.

5.3.5 Adding Actions to the Controller

An action is a special type of Objective-C method. Action methods are special because
they take a single argument called sender, the id of the object that sent the message

invoking the action method. Using IB, we can arrange for an object's action method to be
invoked automatically in response to a user event, such as a button click, menu choice, or
slider drag. Thus, an action method is an event handler.

In Chapter 3, we used the takeIntValueFrom: action method to make an NSTextField
automatically take its value from the NSSlider object when the slider knob was moved (see
Figure 3-16). Here, we'll create our own action methods in the Controller class and arrange
to have them invoked when the user clicks our Calculator's buttons.

11. Click the 0 Actions tab in the Controller Class Info dialog.

12. Click the Add button at the bottom of the Controller Class Info dialog; the
myAction: action will appear, as shown in Figure 5-13.

Figure 5-13. Creating an action (left) in the Controller Class Info dialog; four actions
in Calculator (right)

13. Rename myAction: as clear: and hit Return.

14. Add the clearall:, enterdigit:, and enterOp: actions to your Controller class in a
similar fashion. You don't have to type the colons (:) when renaming actions,
because IB will automatically append them.

Notice that IB alphabetizes the actions as you add them. Your Controller Class Info dialog
should now look like the one on the right in Figure 5-13.

In light of our discussion of the design of the Controller class, the function of these four
actions should seem fairly self-evident. We'll go over the details later.

Notice that there's only one action to handle all of the digit button clicks (enterDigit:) and
only one action to handle all of the function buttons (enterOp:). We'll determine which
digit or function button is clicked by using the single argument of these actions, the id of
the message's sender. By querying the sender of the action message, the enterDigit: and
enterOp: methods can determine which digit or function button was clicked. The method
will then perform the appropriate action. This is a much more economical means of method
dispatch than creating a separate method for each button on our Calculator - it takes less
code and it runs virtually as fast.

5.3.6 Creating the Controller Class Files

Now that we've set up an outlet and several actions for our Controller class, we need to tell
IB to create the Controller.h class interface file and the Controller.m class
implementation file. Then we'll add the appropriate functionality (code) to these class files
and eventually compile them with the Objective-C compiler. IB's Create Files for
Controller command in the Classes menu generates these files from the class specifications
we made in the Nib File window and the Class Info dialog.

15. Make sure the Controller class is selected in the Classes pane of the Nib File
window.

16. Choose Classes Create Files for Controller.

A sheet will unfold from the Nib File window enabling you to specify the filenames for the
class files to be created, as shown in Figure 5-14. Because the name of the class is
Controller, the default names for the class files are Controller.h and Controller.
m. After creating these class files, IB will insert them into the Calculator project.

Figure 5-14. Saving the Controller class files created by IB

17. Click Choose on the sheet to use the default filenames (Controller.h,
Controller.m) and insert them into the Calculator project.

18. Now click the PB icon in your Dock to see how these class files fit into your
project.

The two new files should be located in the Classes group but may be located in the Other
Sources group. If you like, you can move these files from one file group to another in PB's
Groups & Files pane; the organization is for your benefit only and is ignored by PB. When
you have a large project, you may even want to create your own groups and subgroups of
files.

These new Controller class files contain only a skeleton of what we want in the Controller
class. To make our Controller work, we have to add some logic and write some Objective-
C code.

19. Click the Finder icon in your Dock and investigate which files have been created as
part of your Calculator project - there are several!

These project files reside in your ~/Calculator folder. We recommend that you
compare the files in the ~/Calculator folder in the Finder with those listed in the
Groups & Files pane in PB.

5.3.7 Adding Code to Make the Controller Class Work

To make the Controller work, we need to understand a little bit about a four-function
calculator. The basic four-function calculator has three registers: an X and a Y register,
both of which hold numbers, and an operations register, which holds the current operation.
The readout always displays the contents of the X register. Clicking a function button
stores that function in the operations register and sets a flag. If the flag is set, the next time
a digit button is clicked, the number in the X register is moved to the Y register and the X
register is set to 0.

We'll get the Controller class working in stages, testing them one at a time. Generally, this
is a good approach to writing any program, large or small. Object-oriented programming
makes it easy to test the individual parts, because they are all fairly self-contained.

First, we'll get numeric entry and the clear keys working. Later, we'll handle the arithmetic
functions.

20. Back in PB, click Controller.h in PB's Groups & Files pane to open the file in
PB's main window, as shown in Figure 5-15. (If you double-click instead of single-
click Controller.h, a separate editor-type window will open.)

Figure 5-15. Controller.h interface file in PB

Looking at the code in PB's window (in Figure 5-15), note that the Controller class is a
subclass of NSObject, as we specified in IB. Note also that Objective-C declarations have
been generated for the outlet (readout) and the four action methods in the Controller
class that you set up in IB.

Following is the Controller.h file. The lines generated by IB are shown in regular
type, and the lines that you need to insert are shown in bold type.

/* Controller.h */

#import <Cocoa/Cocoa.h>

@interface Controller : NSObject
{
 IBOutlet id readout;
 BOOL enterFlag;
 BOOL yFlag;
 int operation;
 double X;
 double Y;
}
- (IBAction)clear:(id)sender;
- (IBAction)clearAll:(id)sender;
- (IBAction)enterDigit:(id)sender;
- (IBAction)enterOp:(id)sender;
- (void)displayX;
@end

IB generated the first two (non-bold) lines because we subclassed NSObject to create
theController class (importing <Cocoa/Cocoa.h> includes the NSObject class interface
file, as well as the rest of the Cocoa classes). Because we added readout as an outlet in
the Class Info dialog, IB also generated the IBOutlet id declaration for it (see the sidebar
IBOutlet and IBAction). Finally, IB generated the four action method declarations because
we added the four actions in IB's Class Info dialog. Note that the single argument for all of
these action methods, sender, was generated automatically.

21. Insert the five new instance variables and one new method indicated by the lines
shown earlier in bold type in the Controller.h file. We'll discuss the new
displayX "non-action" method a bit later.

22. Save the Controller.h class file (Command-S).

23. Still in PB, double-click Controller.m in the Groups & Files pane to open a
new editor-type window with the Controller implementation code inside. (See
Figure 5-16.)

Figure 5-16. Controller.m interface file in a PB editor window

IBOutlet and IBAction

IB uses the keywords IBOutlet and IBAction when it reads an Objective-C
interface file to determine the outlets and actions in your Objective-C classes.
The word IBOutlet tells IB that the following instance variable is an outlet.
Likewise, the keyword IBAction tells IB that the following method name is an
action.

Consider this example:

@interface ATestObject : NSObject
{
 IBOutlet id anOutlet;>
}
- (IBAction)anAction:(id)sender;
@end

IBOutlet and IBAction are not reserved keywords in the Objective-C language.
Instead, they are #define-d to have special meaning by the Cocoa #import
files. The letters "IBOutlet" are actually #define-d to be nothing. Likewise,
the keyword IBAction is #define-d to be the void type.

The outlet in our example can be used to point to any kind of object within an IB
nib file. IB also allows the use of typed outlets. To declare a statically typed
outlet, replace the "id" with the class type. For example, to tell IB that the outlet
in the above example should point only to an NSWindow or subclass of an
NSWindow, you could change the example to read as follows:

@interface ATestObject : NSObject
{
 IBOutlet NSWindow *anOutlet;
}
- (IBAction)anAction:(id)sender;
@end

By default, IB creates untyped outlets. You can make them typed by editing your
class interface file and reading the file back into IB. An easier way is to click the
down arrow (shown in Figure 5-12, to the right of id) in the Outlet pane of IB's
Info dialog and choose the type from a drop-down list.

In this book, we use a combination of typed and untyped outlets.

Following is the Controller.m file. As with the Controller.h file, we list the lines
generated by IB in regular type and the lines you need to insert in bold type.

/* Controller.m */

#import "Controller.h"

@implementation Controller

- (IBAction)clear:(id)sender
{
 X = 0.0;
 [self displayX];
}

- (IBAction)clearAll:(id)sender
{
 X = 0.0;
 Y = 0.0;
 yFlag = NO;
 enterFlag = NO;
 [self displayX];
}

- (IBAction)enterDigit:(id)sender
{
 if (enterFlag) {
 Y = X;
 X = 0.0;
 enterFlag = NO;
 }
 X = (X*10.0) + [[sender selectedCell] tag];
 [self displayX];
}

- (IBAction)enterOp:(id)sender
{
}

- (void)displayX
{
 id s = [NSString stringWithFormat:@"%15.10g", X];
 [readout setStringValue: s];
}

@end

IB generated the line that imports Controller.h because every class implementation
file must import its own interface file. Most of the other lines generated by IB are simply
stubs for the action methods that we set up in the IB's Class Info dialog. IB generates code
in class files more for convenience than for any other reason.

24. Insert the code shown above in bold type into the Controller.m file.

25. Save the Controller.m class file (Command-S).

The Controller class sends messages to instances of the NSTextFieldCell and NSMatrix
classes. In particular, the newly added displayX method displays the contents of the X
register by sending the setStringValue: message to readout, the outlet that we created in
IB. Later we'll use IB to initialize readout to point to the NSTextFieldCell object (near
the top of the Calculator window).

When a message is sent to an object of a class, the class interface file definition for that
class should be #import-ed in the class definition. But #import statements for the
NSTextFieldCell and NSMatrix class interface file definitions are not listed in the code
we've shown. What's going on? Fortunately, the #import Controller.h line in
Controller.m, together with the #import <Cocoa/Cocoa.h> line in
Controller.h, takes care of importing the NSTextFieldCell and NSMatrix class
interface file definitions for us. In fact, they import all the Application Kit class definitions.

In Cocoa, the AppKit class headers are all precompiled, so it's quite fast to import them all,
provided that <cocoa/cocoa.h> is imported before any symbols are #define-d. (A
precompiled header file has been preprocessed and parsed, thereby improving compile time
and reducing symbol table size.) This is why IB inserts the #import <Cocoa/Cocoa.
h> line in all class interface files it generates.

The clearAll: method in the Controller.m file sets the X and Y registers to 0.0 and the
two flags to false, and then sends the displayX message to self (the Controller object
itself) to display 0.0 in the text display area. The clear: method is similar but only needs to
set the X register to 0.0 and then redisplay. We'll discuss the enterDigit: and enterOp:
methods after we finish setting up the user interface and making all the connections.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.4 Customizing Buttons and Making Connections

In this section we'll use IB to add more interface specifications to the Calculator.nib
file, including customizing buttons further and making several different types of
connections between objects. In order to make connections which involve an object of the
Controller class, we need a representation of it in IB.

5.4.1 Instantiating (Creating an Instance of) the Controller Class

Creating the Controller class isn't enough: we also need to create an object that is a member
of this class, called an instance. Then we have to arrange for the numeric keypad of buttons
in the Calculator window to send action messages to the instance whenever these buttons
are clicked.

1. Make sure the Classes tab is displayed in IB's Nib File window (titled "MainMenu.
nib"), then select the Controller class (recall that it's a subclass of NSObject). If you
have trouble finding it, use the Search feature in the window.

2. Choose IB's Classes Instantiate Controller menu command.

This will create an icon called "Controller" under the Instances tab in the Calculator's Nib
File window, as shown in Figure 5-17 (IB automatically displays the Instances tab view).
This icon represents an instance object of the Controller class - it can be used as the target
object of action messages and also to initialize outlets. You can change the name from
"Controller" to something else if you like - the name isn't used for anything except your
convenience in IB. Note the little circles with exclamation marks in them next to the
instances in Figure 5-17. They represent tiny alerts that can be discovered by mousing over
the instances. For example, if you mouse over the Controller instance, you will discover
that its readout outlet is unconnected (see Figure 5-17).

Figure 5-17. New Controller instance object icon in Calculator's Nib File window

5.4.2 Setting Up Tags and Titles for the Keypad Buttons

Next, we'll set the buttons on the Calculator's numeric keypad to the digits 0 through 9 and
arrange for each one of them to send a message to the Controller object.

A tag is a reference integer for a Control object that can be set and read in IB's Info dialog.
The purpose of tags is to allow your program to distinguish cells in a user interface from
one another, which lets you use the same Objective-C method to handle several different
but closely related functions.

To differentiate between the buttons, the Controller object will read the tag of each button.

3. Double-click the button at the upper-left corner of the matrix in the Calculator
window.

The button highlights with a darker version of your current selection color to
indicate that it is selected, and the NSButtonCell Info dialog displays information
about the button (see Figure 5-18).

Figure 5-18. Setting the title and tag of a Calculator button in IB

4. If necessary, select Attributes in the pop-up menu in the Info dialog. Note how the
window changes to show information about the selected object.

5. Change the title of the NSButton from "0" to "7" in the Info dialog and hit Return.

6. Change the tag of the NSButton to "7" at the bottom of the Info dialog and hit
Return.

When the Calculator is running and one of the buttons in the matrix of digit buttons is
clicked, we'll arrange for the NSMatrix object to send the enterDigit: message to our
Controller object. The Controller object needs to know which button (i.e., which digit) was
clicked, so it will send a message back to the sender (the NSMatrix object) to determine
which of the button cells in the NSMatrix object was selected. The Controller can then get
the tag for that cell and use it in the enterDigit: method as if it were a digit (which is why
we set the tags equal to the value of the NSButton).

7. Change the titles and the tags of the other keypad buttons to reflect the digits that
they represent, as shown in Figure 5-19. You can use the Tab key to move between
buttons in the NSMatrix, but setting the tags is a bit of a nuisance. (Make sure you
set the tags properly - we've found that this is an easy place to make a mistake.)

Figure 5-19. Making two buttons transparent and unenabled in IB

8. Select the lower-left button in the NSMatrix (it's invisible in Figure 5-19).

9. In the NSButtonCell Info dialog, deselect the Enabled switch to make the on-screen
button in our running Calculator unclickable.

10. Now click the Transparent checkbox in the same NSButtonCell Info dialog to make
the button disappear, as in Figure 5-19.

11. Repeat the previous two steps for the lower-right button, so that only 10 of the
original 12 buttons in the NSMatrix are used. (See Figure 5-19.)

12. Click in the Calculator window background (where there are no buttons or text) to
select the window, then click the button matrix once to select the NSMatrix as a
whole.

13. Type Command-Ttobring up the Font panel.

As with most Cocoa applications, IB lets you change the font family, typeface, and size of
most text it displays. Here we want to change the way our application looks.

14. Choose the Lucida Grande 14-point font. (You may have noticed that if you make
the text inside a standalone button too large for the button to display the
information, IB automatically resizes the button. However, IB does not

automatically resize the cells inside an NSMatrix if the text is too large to display.
This behavior is somewhat inconsistent and may be changed in the future.)

5.4.3 Making the Connections

15. Connect the NSMatrix button object to the Controller instance object by pressing
the Control key on the keyboard and dragging the mouse cursor from the middle of
the NSMatrix to the Controller instance object icon in the Nib File window, as
shown in Figure 5-20.

Figure 5-20. Target/action connection from NSMatrix to Controller instance

When you make the connection between the NSMatrix and the Controller instance, it is
very important that you press the mouse button when the mouse cursor is over the
NSMatrix and release the button when the cursor is over the Controller icon. The order
matters, because the NSMatrix will be sending a message to the Controller, not the other
way around. (Later in this chapter, we'll drag the connection in the other direction to
accomplish something else.)

Figure 5-20 shows the resulting "connection wire" between the NSMatrix and the
Controller instance icon. The small square in the middle of the NSMatrix indicates the

source of the connection, while the square around the Controller instance icon indicates the
target. Make sure you have connected the whole NSMatrix and not one of the individual
buttons in the NSMatrix.

After you release the mouse button, IB will display the NSMatrix Info dialog (see Figure 5-
20). You can determine the source object of the connection by the name in the title bar of
the Info dialog - in this case, it should be "NSMatrix Info". The column in the window
should include the four action methods we set up earlier in the destination object, namely
the Controller instance.

16. Click the enterDigit: action method and then click the Connect button in the
NSMatrix Info dialog. The dimple next to the method indicates that the connection
was made. See the NSMatrix Info dialog at the right in Figure 5-20.

When the Calculator program is running, the connection we just made means the
following: whenever a user clicks any one of the 10 on-screen digit buttons, the NSMatrix
object will send the enterDigit: action message to an instance of our Controller class. The
Controller instance is the target and the enterDigit: method is the action.

It's easy to connect the wrong objects or to disconnect a
connection you want, so be extremely careful when making
connections and check them in IB if your application isn't
responding properly.

Next, we'll add clear and clear all buttons in an NSMatrix object, as we did with the digit
buttons. This time, however, we'll connect each button to the Controller object individually
- we will not connect the NSMatrix.

17. Add a matrix of two buttons above the digits matrix in the Calculator window,
using the same technique we used earlier (drop a button from the Cocoa-Views
palette into the Calculator window and then Option-drag on a selection handle to
get two buttons in a matrix).

18. Rename the two new buttons "C" (for clear) and "CA" (for clear all) and set the
font to Lucida Grande 14, the same as for the digit buttons.

Your window should now look similar to the one in Figure 5-21. If you don't remember
how to add a matrix to your window, refer back to Section 5.2.2. If you can't find the
Palettes window, choose IB's Tools Palettes Show Palettes menu command.

Figure 5-21. Adding another NSMatrix of NSButtons to the Calculator window

19. Double-click the CA on-screen button to select it. The NSButtonCell Info dialog
(not the NSMatrix one) should appear.

20. Connect the CA button to the Controller instance object icon by Control-dragging
from the button to the icon and then double-clicking the clearAll: action in the
NSButtonCell Info dialog (double-clicking has the same effect as clicking the
action name and then clicking the Connect button). See Figure 5-22.

Figure 5-22. Target/action connection from NSButtonCell to Controller instance

21. Similarly, double-click the C on-screen button to select it and then connect it to the
Controller instance icon. This time, double-click on the clear: action to complete
the connection.

You can make IB show you an existing connection from a source object by first selecting
the source object and then clicking either the target or the action method with a dimple in
the Connections Info dialog. You might try this by selecting the CA button again and
single-clicking the clearAll: action method. Don't double-click clearAll:, because that will
break the connection.

Next, we'll set attributes of the Calculator's text (actually numeric) display area:

22. Select the NSTextField object that is the white display area in the Calculator
window.

23. If necessary, select Attributes in the NSTextField Info dialog (or type Command-
1).

24. Deselect the Editable option in the NSTextField Info dialog (near the bottom) so
that the text in the NSTextField object is not editable by the end user of the
Calculator.

Be sure that you leave the Selectable option enabled, as this makes it possible for
your user to copy the answer into another application. Many programmers
inadvertently make their text not selectable or editable, which can produce
significant frustration on the part of users!

25. Set the alignment to be right-justified by clicking the icon that looks like this: .

26. If necessary, resize the window. Also, resize the text field so that it goes across the
top of the window but stays within the blue guidelines.

The NSTextField Info dialog should now look like the one in Figure 5-23.

Figure 5-23. Setting the attributes for the NSTextField in the Calculator

The source of all three Calculator connections we've made so far has been a user interface
object, while the destination has always been the Controller object. In the next connection
we make, the direction will be reversed - the source will be the Controller and the
destination will be an interface object. This second type of connection requires an outlet,
and we will refer to it as an outlet connection. Fortunately, we've already declared the
outlet that we need (readout).

27. Control-drag from the Controller instance object icon to the NSTextField object.
The connection wire (in your current selection color) should look like the one in
Figure 5-24.

Figure 5-24. Outlet connection from Controller to NSTextField

28. In the Connections Info dialog, double-click the readout outlet to complete the
connection, as shown in Figure 5-24.

Connecting the readout outlet to the NSTextField object causes the readout instance
variable in the Controller object to be initialized to the id of the NSTextField when the nib
section is loaded at runtime. Initializing an outlet in an instance object is the only way to
determine the id of an object created with IB, so outlets must be used when sending
messages to user interface objects.

29. Type Command-S in IB to save the MainMenu.nib file.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.5 Compiling and Running a Program

At this point, we're ready to test the keypad of digit buttons. To do this, we must compile
the Controller.m and main.m source code and link them together with the
MainMenu.nib file. (We'll discuss the main source file later, in Section 5.10.)

There are three ways to compile a Cocoa program:

● From Project Builder
● From a command-line prompt
● From GNU Emacs

We'll describe each of these approaches in the following sections.

5.5.1 Compiling and Running a Program from PB

The following steps will compile (make, build) and run your Calculator program directly
from PB:

1. Activate PB and click the horizontal Build tab near the right side of PB's main
window to see the Build pane (above the tabs).

2. To have PB include debugging information in the executable, you must select the
vertical Targets tab and make sure that the Development build target is selected, as
shown in Figure 5-25.

Figure 5-25. Compiling the Calculator application in PB's main window

3. Start the compilation process by clicking the Build button near the upper-left corner
in PB's main window. If you haven't saved all of your files, PB will prompt you to
save them before building. In this case, click the Save All button.

If there are no compile-time errors, you should see "Build succeeded" in the lower-left
corner of PB's main window and the compile log. If an error occurred, first check the code
in your Controller class files and then refer to the next section in this chapter.

4. Run your program directly from PB by clicking the build and run button near the
top-left corner of PB's main window.

This will run the Calculator.app executable file, which was created in your ~/
Calculator/build folder when the Calculator program successfully compiled. (The .
app extension doesn't appear in the Finder.) We didn't actually have to compile and run in
a two-step process; we only needed to click the build and run button.

The main Calculator window and menu appear on the screen, as shown in Figure 5-26.

Figure 5-26. Calculator running on the Mac OS X desktop

5. Choose Calculator Hide Others to simplify your screen.

Note that Calculator is running as any other Mac OS X application runs, and we get
the menu bar for free! Note also that the position and size of the Calculator window
and its contents are the same as the way you left them in IB.

6. Try the keypad buttons to make sure every digit works. Clicking the buttons 1, then
2, then 3 in order should make the number "123" appear in the white text area. The
C and CA keys should zero-out the values on the display.

Note that the new default application icon is in your Dock, shown on the right in Figure 5-
26.

7. Choose Calculator Quit NewApplication to exit the Calculator application
(we'll change the menu label from "NewApplication" to "Calculator" later).

Compiling and Running a Program in the
Terminal Shell Window

You can use the pbxbuild utility to compile your Calculator program from the
Terminal shell window or from within the GNU Emacs text editor. This can be
handy if you want to use an editor other than PB to create your source code.

For example, to compile the Calculator program, you might type:

localhost> cd ~/Calculator
localhost> pbxbuild

To compile your Calculator program within GNU Emacs in a Terminal shell
window, type:

M-x compile <Return>

Emacs will print:

make

Press the Backspace button four times to delete the word "make," and then type:

pbxbuild <Return>

The compile log should look similar to that in PB.

If everything compiled correctly, you now have a Cocoa application called
Calculator.app in your ~/Calculator/build directory. To run your
program, either double-click the Calculator icon in the Finder or type the
following in a shell window:

localhost> open build/Calculator.app

The open command sends a message to the Finder that it should open a file.
This has the same effect as double-clicking an application icon in the Finder. See
the earlier Figure 5-26 - the application should run similarly. Any errors or
output to the standard error or standard output devices will be visible in the
Console application.

Make sure that you type the .app, or the executable won't be found! The .app
extension doesn't appear in the Finder, but it is part of the Calculator
application's name. It will also appear in file listings made in the Terminal
window using the Unix ls command.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.6 Compiler Error Messages

Sometimes (many times!) code does not compile properly, as you can see in the PB
window in Figure 5-27.

Figure 5-27. Compiler errors in PB's main window

If instead of a clean compile you get compiler warning or error messages, you have
probably made a typographical error at some point in the code. For example, the error
message in Figure 5-27 was generated by removing the first semicolon from the displayX
method in the Controller.m file (the semicolon is missing from the statement above
the highlighted statement at the bottom in Figure 5-27).

If you click on an error message in the top-right panel of PB's window (e.g., "syntax error,
found 'setStringValue'"), the offending line of code will be highlighted in the source code
file, Controller.m. If you double-click the error message, a new window will open
with the line containing the error highlighted (actually, the error is in the previous line, but
it doesn't cause a problem until the highlighted line). This is a great help in finding and
fixing compiler errors!

If you get compiler errors for source code that you type in from this book, we suggest that
you first reexamine your code line by line, rather than downloading our code from the
Web. Examining code for errors is an important skill to develop.

As an alternative to double-clicking an error message, you can open the Controller.m
file in a PB editor window, type Command-L to bring up the Goto panel, enter "45" (the
line where the error was reported), and inspect the code on line 45 and previous lines.

(If you compiled your program from within GNU Emacs, you can use the Emacs command
"goto-next-error" to automatically jump to the file and line containing the error.)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.7 The enterDigit: Action Method

The enterDigit: method we added to the Controller class is invoked whenever a digit
button is clicked. Let's look at it closely to see how it works.

- enterDigit:sender
{
 if (enterFlag) {
 Y = X;
 X = 0.0;
 enterFlag = NO;
 }

 X = (X*10.0) + [[sender selectedCell] tag];
 [self displayX];
 return self;
}

The first part of the function is self-explanatory: if the enterFlag instance variable is
set, the value of the X register is copied into the Y register and both the X register and
enterFlag are cleared. Note that the scope of instance variables such as enterFlag is
the entire class definition. All methods within a class have access to all instance variables
defined in that class.

The next line contains the magic: the value in the X register is multiplied by 10 and added
to the returned value, [[sender selectedCell] tag]. This performs a base-10 left-shift
operation on X and then adds the last digit pressed. Let's look at this nested method
expression in pieces.

[sender selectedCell] sends the selectedCell message to the variable sender. When the
enterDigit: method is invoked (called), sender is set to the id of the object that sent the
message - in this case, the NSMatrix object. Clicking a button in an NSMatrix selects that
button. Thus, the expression [sender selectedCell] returns the id of the NSButtonCell
object for the button that was clicked. [[sender selectedCell] tag] then sends the tag
message to the NSButtonCell object; this method asks the button for the tag of the cell.
Thus, the nested message expression [[sender selectedCell] tag] returns the tag of the
pressed button. (Recall that the tag on the digit button is equal to the digit label on the
button.)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.8 Adding the Four Calculator Functions

We still need to add the functions that perform the calculations to our Calculator
application. We'll add six new buttons in yet another NSMatrix. The Controller object will
need to differentiate between the buttons somehow, so we'll assign them different integer
tags.

Our first step in handling the four functions is to equip our Controller class with definitions
for the mathematical operations that we want our Calculator to be able to handle. Then
we'll add these functions to our Calculator's user interface.

1. Using PB's (or another) editor, insert the following enumerated data type after the
#import directive in the Controller.h file (remember that bold code should
be typed into class files):

enum {
 PLUS = 1001,
 SUBTRACT = 1002,
 MULTIPLY = 1003,
 DIVIDE = 1004,
 EQUALS = 1005
};

These codes will correspond to the tags that we will give the arithmetic buttons in the
NSMatrix (we don't want to confuse these tags with tags that we set previously). The
Controller object will determine the tag of the button that sends it the action message and
use that tag to figure out which function button the user has clicked. This is similar to what
we did with the NSMatrix of digit buttons.

2. Using an editor, insert the lines shown here in bold into the enterOp: method in the
Controller.m file.

You may be able to use the same PB code pane (or separate window) that you used
for Controller.h by pressing the up-down "stepper" arrows next to the
filename and dragging to Controller.m. You can also type the three-key
combination Command-Option-up-arrow to rapidly switch between a class's .h
and .m files.

- (IBAction)enterOp:(id)sender
{
 if (yFlag) { // Something is stored in Y

 switch (operation) {
 case PLUS:
 X = Y + X;
 break;

 case SUBTRACT:
 X = Y - X;
 break;

 case MULTIPLY:
 X = Y * X;
 break;

 case DIVIDE:
 X = Y / X;
 break;
 }
 }

 Y = X;
 yFlag = YES;

 operation = [[sender selectedCell] tag];
 enterFlag = YES;

 [self displayX];
}

The enterOp: method is the computational engine of our Calculator application. It
performs the arithmetic operation that was stored in the operation instance variable,
sets up the registers and flags for another operation or another button click, and then
displays the contents of the X register in the window display area.

3. Activate IB and create an NSMatrix with six buttons, as shown in Figure 5-28. (If
you don't remember how to do this, go back and review how the digit buttons were
set up.)

Figure 5-28. Calculator window with operations in IB

As you try to place these buttons, you may want to resize or rearrange the existing buttons
on the current Calculator interface. Feel free - one of the most powerful things about IB is
that you move around an interface after you have created it.

4. Set the title of each button to correspond with one of the six basic functions, as
shown in Figure 5-28. You may want to use a larger font for some of the titles to
make them more readable.

5. Set the tag of each button (except "+/-") to correspond with the enum defined in the
Controller.h file above.

To set the tag of a button, select the button, type Command-1 to display the
NSButtonCell Info dialog, change the value of the tag, and press Return. Don't
worry about the unary minus "+/-" button for now. Again, double-check your tags
to make sure they are correct.

6. Connect the new NSMatrix to the Controller by Control-dragging from the
NSMatrix to the Controller instance icon and double-clicking the enterOp: action
in the NSMatrix Info dialog. This connection is similar to the one we made for the
numeric keypad.

7. Choose IB's File Save (or Save All) command to save the nib and Controller
class files.

8. Compile your program and run it. If you use PB, all you have to do is click the
build and run button, and PB will do all the rest (including prompting for file
saving).

All of the Calculator's buttons should now work properly, except for the unary minus
button.

9. Choose Calculator Quit or click PB's Stop button to exit the Calculator
application.

For easy access, we recommend that you keep the PB, IB, and Terminal application icons
in your Dock while developing applications. Also, when you want to switch applications,
use Mac OS X's Hide command rather than Quit. This keeps your screen clear and avoids
the wait of having applications start up again when you need them.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.9 Adding the Unary Minus Function to the Controller Class

We want the unary minus function (the button with the "+/-" on it) to change the sign of the
number currently displayed in our Calculator's numeric display area. One way to
implement this function is to handle it with another case in the switch statement in the
enterOp: method - we could give the "+/-" key its own tag and have the enterOp: method
intercept it and perform the appropriate function. The problem with this approach is that
the unary minus function has little in common with the other arithmetic functions: it takes
one argument instead of two, and it operates immediately on the displayed value. A far
better way to implement this function is to implement a new action method in the
Controller class.

5.9.1 Using IB's Read Files Commandwith a New Action Method

Adding new action methods to existing classes is slightly more difficult than creating the
initial class definition. Early versions of IB simply replaced the existing class files
(Controller.h and Controller.m, here) with new versions, wiping out any source
code that you might have added. Current versions of IB detect that you have made changes
in the class files and allow you to merge the changes using the Merge Files application.
Unfortunately, this can be a painful and error-prone process. The safest way to add new
outlets and actions to files after they have been created and edited is to add these items
directly to the Objective-C interface files in a text editor, and then use IB's Classes
Read Files menu command to inform IB about any new actions and outlets.

1. Back in PB, insert the doUnaryMinus: action method definition, shown here in
bold, into Controller.h. (You can tell that it's an action method because of its
IBAction typing and because sender is the only argument.)

...
- (IBAction)clear:(id)sender;
- (IBAction)clearAll:(id)sender;
- (IBAction)enterDigit:(id)sender;
- (IBAction)enterOp:(id)sender;
- (void)displayX;
- (IBAction)doUnaryMinus:(id)sender;
@end

2. Now insert the doUnaryMinus: method shown here into Controller.m:

- (IBAction)doUnaryMinus:(id)sender
{

 X = -X;
 [self displayX];
}

3. Choose PB's File Save All menu command to save the Controller class files.

It doesn't matter where you put this method in Controller.m, as long as it's between
the directives @implementation and @end. However, for consistency, we suggest that
you order the method implementations in the same way that the method declarations are
ordered in the Controller.h class interface file.

Finally, we have to tell IB about the new doUnaryMinus: method and set up a connection
between the on-screen unary minus button and the Controller:

4. Activate IB by double-clicking MainMenu.nib in PB's main window
(MainMenu.nib is one of the Resources in your project).

5. Click on the Classes tab in IB's Nib File window to open the Classes pane.

6. Select Controller in the class hierarchy in the Classes pane. Because it's a subclass
of NSObject, you may have to scroll to the left (or use the Search field).

7. Choose IB's Classes Read Files menu command.[1]

IB will display the Read Files dialog, as shown in Figure 5-29.

Figure 5-29. Read Files dialog in IB

This dialog tells us that the definition for Controller.h will be parsed from the edited
file on disk.

8. Make sure that Controller.h is selected, as shown in Figure 5-29, and click
Parse in IB's Read Files dialog to parse the saved Controller.h file on disk.

9. Make sure that the Controller class is selected in the Nib File window and then type
Command-1 to see the Controller's attributes in the Info dialog.

The new doUnaryMinus: action method should appear in the Controller Info dialog, as in
Figure 5-30, indicating that the Read Files command worked.

Figure 5-30. New doUnaryMinus: action method in IB after Read Files command

10. Double-click the unary minus ("+/-") button in the Calculator window. Make sure
that the NSButton, not the NSMatrix as a whole, is selected.

11. Connect the selected unary minus button to the Controller instance. Do this by
Control-dragging from the button to the Controller instance in the Nib File window
(note that the Instances tab view displays automatically) and then double-clicking
the doUnaryMinus: action in the NSButtonCell Info dialog.

When a button in an NSMatrix object has its own target, as in the previous example, the
button's target overrides the target of the NSMatrix. Thus, when the user clicks on the
unary minus button, the button will send the doUnaryMinus: message to its own target,
rather than sending the enterOp: message to the target of the NSMatrix.

12. Back in PB, build and run the program (note how PB nicely prompts to save files).

The unary minus function should now behave as expected (although the application isn't
perfect yet - it has some bugs).

You might be wondering why IB's Read Files command didn't bring in the definition of the
displayX method in addition to the doUnaryMinus: method. The reason is that IB only
looks for action methods when parsing a class interface (.h) file. An action method should

always be declared in the form:

- (IBAction)methodname: (id)sender ;

with a single argument called sender. As we'll see later, IB will also bring in outlet
declarations when parsing a class interface file. These outlet declarations must be instance
variables of the form:

IBOutlet id outletname;

Action methods and outlets are the only types of information that IB learns about a class
when it parses a class interface file.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.10 The Files in a Project

If you've been checking your ~/Calculator directory while stepping through this
chapter, you'll probably have noticed that several files were automatically created in it.
This section will discuss what these files contain and how they fit into a project.

PB's Groups & Files pane uses an outline view to list each project file by type, as shown in
Figure 5-31. You can display the different types of files in this outline view by clicking the
disclosure triangle next to a file type (e.g., Resources, Frameworks). In Table 5-1, we
summarize what each file type means.

Figure 5-31. Groups & Files pane in Calculator's main window in PB

Table 5-1. Cocoa file types

File type Typical extensions Meaning

Classes .h, .m, .mm
Objective-C class interface (.h) and
implementation (.m) files. The .mm extension is
used for Objective-C++ source code files.

Other Sources .c, .m, .mm
ANSI C (.c) and Objective-C (.m) source code
files (e.g., main.m).

Resources .nib, .strings
Resources used by the application, including the
IB (.nib) files and strings tables.

Frameworks .framework
Library files that are linked into your program (e.
g., Cocoa and Foundation).

Products .app Applications that have been built with PB.

5.10.1 The main.m Program File Generated by PB

When you create a project, PB generates an Objective-C file called main.m containing the
program's main() function. The main() function is where every Objective-C (and C)
program begins. The following code in the main.m file is generated in the Calculator
project:

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

As you can see, this is a very simple function! All it does is run the
NSApplicationMain() function that is built into the Cocoa Application Kit
framework.

The Cocoa documentation for the NSApplication class (not function) defines the
NSApplicationMain() function as the following:

void NSApplicationMain(int argc, char *argv[]) {
 [NSApplication sharedApplication];
 [NSBundle loadNibNamed:@"myMain" owner:app];
 [NSApp run];
}

This function creates the NSApplication object, which creates the autorelease memory pool
that we discussed in Chapter 4, then loads the application's main nib file (MainMenu.nib
in Calculator) and starts the NSApplication object's main event loop. The main event loop
handles menu clicks, keystrokes, and all of the other events to which an application can
respond.

Control doesn't return to main() until the NSApplication object receives a stop: or
terminate: message, which usually happens in response to a user's choosing the
application's Quit menu item. At that point, the main() function receives the return code
from the NSApplicationMain() function.

5.10.2 Other PB-Generated Files

In addition to creating the Objective-C .h, .m, .nib, and main.m program files for a
project, PB created the following files for us:

Calculator.pbproj

The directory containing the project files, which keep track of the individual parts
of the project. You might investigate this directory in a Terminal window because,
like Calculator.app, it appears to be a simple file (not a folder) in the Finder.

Calculator.pbproj/project.pbxproj

The project file that keeps track of the parts of the project.

Calculator.pbproj/ username.pbxuser

The project file that keeps track of the preferences for the user username.

English.lproj

A directory that contains the information for an English-language version of our
project, including the MainMenu.nib file (discussed earlier) in our example.

English.lproj/InfoPlist.strings

A string table that references all of the strings inside the English-language project.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.11 Summary

We got a great start programming in this chapter! We started by building a real project with
PB. Then we used IB and Objective-C to build user interface objects, create and customize
our own class, and connect these user interface objects with an object of our new class. We
also learned a little more about Objective-C and some AppKit classes, and a lot about the
files that PB generates. In the process, we used four important operations that IB can
perform on classes: Subclass, Instantiate, Read Files, and Create Files. These operations
were all found in the Classes menu in IB (some of these operations can be performed in
ways other than using the menu commands).

These operations are the basic building blocks that you will use to create your own
applications, although the order in which you use them will vary from project to project.
Typically, the steps for creating an application are the following:

1. Create a project using PB.

2. Build the application's user interface using IB.

3. Customize the buttons and other user interface items in IB.

4. Design the application's Controller class.

5. Connect the controls to the Controller, and vice versa.

6. Add code to make the Controller class work.

7. Compile, test, and fix the code that you have created.

8. Tweak the user interface as necessary.

In the next chapter, we'll add an About box (dialog) and some icons to our Calculator
application, and we'll find out how to increase the efficiency of a Cocoa application by
using separate nib files.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 5. Building a Project: A Four-Function Calculator

5.12 Exercises

1. Instead of creating a doUnaryMinus: method to handle the "+/-" function key in
Calculator, add the unary minus function to the enterOp: method.

2. Instead of creating a single enterOp: method to handle the four arithmetic
operations, create four separate methods to handle the four operations.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part II: Calculator: Building a Simple Application

Chapter 6. Nibs and Icons

In the previous chapter, we created our simple four-function Calculator application.
Although our Calculator works, it lacks the nifty presentation and many of the basic
features of most Mac OS X applications. Some aspects were simply not implemented. In
this and the following two chapters, we'll use our simple Calculator as a starting point and
slowly expand it, adding new features one by one.

In the first section of this chapter, we'll configure the Interface Builder-supplied menus for
the Calculator application and make some minor changes to the default About box
(window) that is provided. Typically, the About box informs users about the version,
author, and copyright of the application.

After seeing how the Cocoa-bundled About box works, we'll create a new About box from
scratch for our Calculator. We will use this new About box to demonstrate how to manage
multiple nibs (interfaces) within a single application. In the last section of this chapter,
we'll see how Cocoa allows you to specify an icon for an application.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.1 Customizing MainMenu.nib

As we saw in Chapter 5, Project Builder creates your application (i.e., new project) from a
stored template. It's up to you to customize this template to fit your own needs. We've done
a lot of that already, but there are a lot more possibilities, as we'll soon see.

6.1.1 Changing the Application Menu

Perhaps the most obvious part of PB's application template interface (provided in
MainMenu.nib) that needs customization is the menu bar. In Figure 6-1, on the left, we
show the main application menu as it is delivered to us in the PB template. The first thing
we'll do is to change the application name and the appropriate menu items.

Figure 6-1. Application Menu before (left) and after (right) customization

1. Launch PB by double-clicking the file Calculator.pbproj. (We recommend
that you keep this file's icon in the Finder's toolbar or in the Dock.)

2. Double-click MainMenu.nib in the Resources section of PB's Groups & Files
browser to launch IB.

3. Choose Interface Builder Hide Others to simplify the screen.

4. If you don't see a small menu titled "MainMenu.nib - MainMenu" on the screen,
then double-click the MainMenu icon in the MainMenu.nib Nib File window.

5. Double-click NewApplication in the menu bar titled "MainMenu.nib - MainMenu".
The word will highlight in your highlight color. Type Calculator and hit Return to
change the application's name in the main menu.

6. Single-click Calculator in the menu bar to open up the Calculator menu.

7. Double-click on the first menu item and change the title from "About
NewApplication" to "About Calculator".

8. Similarly, change the menu items "Hide NewApplication" to read "Hide
Calculator" and "Quit NewApplication" to read "Quit Calculator".

Your application menu should now look like the screen shot on the right in Figure 6-1.

9. Single-click the About Calculator menu item and then choose Tools Show
Info (or type Shift-Command-I) to see the NSMenuItem Info dialog.

10. If necessary, choose Connections in the pop-up menu to see the NSMenuItem
Connections Info dialog (or type Command-2).

Note that there is a target/action connection indicated by the dimple () next to the
orderFrontStandardAboutPanel: action method. This method causes the NSApplication
object to display a standard About box. (Note how the programming environment uses the
term panel, whereas the Aqua interface guidelines reject that term. In our discussion, we'll
use whatever term is appropriate in the given context.)

11. Single-click the orderFrontStandardAboutPanel: action method in the
NSMenuItem Connections Info dialog to see a connection wire between the About
Calculator menu item and the File's Owner icon in the Nib File window, as shown
in Figure 6-2.

Figure 6-2. Connection between About Calculator menu item and File's Owner

Recall that the File's Owner icon represents the object of type NSApplication in charge of
running your application and interfacing with the Mac's hardware. Thus, when the
Calculator application is running and the About Calculator menu item is clicked, this target/
action connection means that the orderFrontStandardAboutPanel: action message will
be sent to the NSApplication object. The orderFrontStandardAboutPanel: method does
exactly as its name indicates - it displays the standard About box (panel) in front of all
other on-screen windows.

12. Repeat Step 11 for the last four menu items in the Calculator menu, beginning with
Hide Calculator, to find out about their preset connections and action methods.

Some of the menu items in other menus have additional preset connections. For example,
the File Close menu item sends a performClose: message to the FirstResponder
object (probably the key window). You might take a few minutes to investigate these
connections, but be sure not to disconnect any of them.

Note that there has been no change to the Calculator application in the last four steps -
we've just been poking around. If you want, you can now build and run your application
and see the new Calculator menu. We'll do that in a later step, after we modify the About
box to fit our application.

6.1.2 Changing the Strings in the About Box

Every Mac OS X application should have an About box. The About box displays basic
information about the application, such as who created it and what version is currently
running. About boxes are so important that they are built into the Cocoa AppKit. An About
box is occasionally referred to as an About panel, especially in the programming world.

The left side of Figure 6-3 shows the Calculator application's default About box (except the
application's name, which was changed to "Calculator" when we first named the project in
PB). You can display this About box by running the Calculator application and choosing
the Calculator About Calculator menu item. As you can see in Figure 6-3, the About
box displays the same application icon (currently the default one) that PB uses to identify
the Calculator program in the Finder. It displays the name of the program and a version
number. But what's this "MyCompanyName" company? And where are these strings
coming from in the first place?

Figure 6-3. Default (left) and modified (right) About boxes

Just as the Cocoa development environment allows you to store the interface of your
application in a resource called a nib, you can also store string resources in special files
called plists (short for property lists), or string tables. When you create a new project, PB
creates a file called InfoPlist.strings that holds a series of name/value pairs for
textual information about your application. The built-in AppKit About box uses this string
table to determine what information should be displayed inside the About box for your
application.

13. Back in PB, select the InfoPlist.strings file in the Resources section of the
Groups & Files pane. The contents of the file should be displayed in the lower-right
pane of PB's window.

14. Change the copyright year from "2001" to "2002" and the company name from
"MyCompanyName" to "Garfinkel & Mahoney" (or anything else you want!) in the
NSHumanReadableCopyright string. See Figure 6-4.

Figure 6-4. Editing the InfoPlist.string property list table

15. Click PB's build and run button.

16. Save the InfoPlist.strings file (and any other file) when prompted.

17. With the Calculator application running, choose Calculator About Calculator.
You should see the new About box shown on the right in Figure 6-3.

18. Choose Calculator Quit Calculator.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.2 Managing Multiple Nibs

When a Cocoa application starts up, all of the objects stored in its main nib are loaded into memory and
initialized. This takes time (the more objects, the more time), and until the nib is loaded, your application
can't do anything else. This can be real drag, especially if your program doesn't need most of the objects in
the main nib for normal operation. For this reason, Cocoa lets you take objects that you don't use often and
place them in separate nibs. You can arrange for these auxiliary nibs to be loaded only when they are
needed.

Auxiliary nibs should be used for most panels that do not need to be displayed when your program first starts
up. Instead, the files are loaded the first time that the panel is needed. Once the panel is loaded, it is resident
in your computer's memory - additional attempts to make the panel display go much faster.

Now we'll arrange for our Calculator application to use a separate nib for its About box. This will consist of
three steps:

i. Creating the new nib that contains the About box

ii. Modifying the Controller class to load this new nib (and thereby display the About box)

iii. Modifying the Calculator's MainMenu.nib accordingly

For pedagogical reasons, we'll perform these steps in the order (ii), then (iii), and finally (i).

6.2.1 Modifying the Controller Class

To start, we'll modify the Controller object to add two things:

aboutPanel

A new outlet that holds the id of the About box

showAboutPanel:

A new action method that displays the About box

You might think that the easiest way to create the new outlet and action method is to add them in IB's
inspector window, as we did in the previous chapter. You can do this. However, because we have added
code to the Controller.h and Controller.m class files, if you add the outlet and action methods in
IB, you will need to use Apple's File Merge utility to merge the changes that you made in these files with the
changes that IB makes. This can be somewhat complicated, and if you make a mistake, you will lose all of
the specialized coding that you have added so far!

Instead, we believe that the easiest way to add new outlets and action methods to the Controller class is to
use a text editor to add them directly to the Controller.h and Controller.m class files, and then use

IB's Classes Read Files command to read them into IB's internal description of the class. The new
outlet and action will then appear in IB's Controller class inspector, and we'll be able to use them to make
connections with user interface objects. (Recall that we parsed an outlet from the Controller.h file into
IB in the previous chapter; here we'll parse a method in a similar fashion.)

1. Back in PB, insert the two lines shown here in bold into Controller.h, and save the file:

@interface Controller : NSObject

{
 IBOutlet id readout;
 BOOL enterFlag;
 BOOL yFlag;
 int operation;
 double X;
 double Y;
 IBOutlet id aboutPanel;
}
- (IBAction)clear:(id)sender;
- (IBAction)clearAll:(id)sender;
- (IBAction)enterDigit:(id)sender;
- (IBAction)enterOp:(id)sender;
- (void)displayX;
- (IBAction)doUnaryMinus:(id)sender;
- (IBAction)showAboutPanel:(id)sender;
@end

The aboutPanel outlet will eventually be set to the id of our new About box object. The
showAboutPanel: action method will be coded to display the About box in response to the user's choosing
the Calculator About Calculator menu command.

2. Make sure you save the edited Controller.h file at this point, because IB will read the class
interface file from disk, not from your edited but unsaved copy.

3. Now double-click the MainMenu.nib resource in PB to open the interface in IB. (Following that,
you again might want to choose IB's Hide Others menu item to simplify your screen).

4. Select the Controller class (under NSObject) under the Classes tab in IB's MainMenu.nib window
and choose IB's Classes Read Files menu item.

5. Double-click Controller.h in the Read Files panel that opens to parse the new definition of the
Controller class from the updated Controller.h file on disk.

6. Type Command-1 to display IB's Attributes Info dialog; you should see the new aboutPanel
outlet and the new showAboutPanel: action method, as shown in Figure 6-5. (If you don't see them,
you probably didn't save the Controller.h file after editing).

Figure 6-5. New outlet (left) and action method (right) in Controller class

7. Back in PB, insert the entire new showAboutPanel: method, shown here in bold, into
Controller.m. We suggest that you place it just before the @end directive.

- (IBAction)showAboutPanel:(id)sender
{
 if (aboutPanel == nil) {
 if (![NSBundle loadNibNamed:@"AboutPanel.nib" owner:self]) {
 NSLog(@"Load of AboutPanel.nib failed");
 return;
 }
 }
 [aboutPanel makeKeyAndOrderFront: nil];
}

Every Objective-C instance variable is initialized to nil (0) when an object is created.[1] When the Calculator
application starts up, the aboutPanel outlet in the Controller instance will not be explicitly set, so its
value will be nil. Thus, when the showAboutPanel: method is invoked the first time, the conditional if
statement will cause the loadNibNamed:owner: message to be sent to the NSBundle class.

A bundle in Cocoa is a collection of files in a folder that is used to store dynamically loaded code, icons,
sounds, objects, and/or other kinds of information. A nib is a special kind of bundle that is used by IB to
store user interfaces. Applications are another special kind of bundle that are created by PB and used by the
Finder to put together all of the files that go into an application. Frameworks and IB palettes are additional
examples of bundles.

The call to the loadNibNamed:owner: method loads the nib bundle containing the About box (which we'll
create later in this chapter) from the nib AboutPanel.nib. When the nib is loaded, it automatically
initializes the aboutPanel outlet of its owner to the id of the About box. (We'll show you how to create
the About box and set up this initialization a bit later.) Finally, the showAboutPanel: method will send the
About box object the makeKeyAndOrderFront: message, which makes the About box the key window and
brings it to the front of the window display list (making it visible). If something goes wrong with the

loading, the NSLog()[2] function will display an error message in the system console and in PB's Run
pane if the application is run from PB. This can be very useful in debugging.

The second time the showAboutPanel: method is called, the aboutPanel outlet will already be
initialized. Thus, the statement sending the loadNibNamed:owner: message will be skipped, preventing a
second copy of the nib from being loaded. Because the nib that we loaded the first time through is still in
memory, the About box will be displayed without the loading delay.

Apple's "Aqua Interface Guidelines" say that bringing up a panel should be a safe and reversible option. A
user should be able to make the panel disappear by clicking a cancel or close button without any ill effects
for the application. Our About box will meet this requirement.

6.2.2 Modifying the Main Calculator Nib

Next we'll modify the About Calculator menu item command in the Calculator's main menu so that it
invokes our showAboutPanel: method.

As we saw earlier in this chapter, the Cocoa development environment gives every new Cocoa application a
built-in About box. This panel is displayed by the NSApplication object when it receives the
orderFrontStandardAboutPanel: message. To have our application display our custom About box (which
we haven't created yet), we'll need to change the About Calculator menu item so that it invokes our method,
instead of the default method.

To do this, follow these steps:

8. Back in IB, click Calculator in the Calculator main menu to open the submenu.

9. Select the About Calculator menu item.

10. Type Command-2 to display the Connections Info dialog for the NSMenuItem, as shown earlier in
Figure 6-2.

11. Make sure that the orderFrontStandardAboutPanel: action method is highlighted in the
Connections inspector and then click the Disconnect button to remove the default connection. The
dimple next to the method should disappear.

12. Control-drag from the About Calculator menu item to the Controller object in the MainMenu.nib
window to create a new connection, as shown in Figure 6-6.

Figure 6-6. New connection between About Calculator menu item and Controller instance

13. Select the showAboutPanel: action in the NSMenuItem Info dialog (see Figure 6-6), and then click
the Connect button at the bottom of the dialog. The Connect button will become a Disconnect button,
as shown in Figure 6-6. (You can also double-click the action method.)

We have now arranged for the About Calculator menu command to invoke the Controller's
showAboutPanel: action method.

There is one other modification that we should make to the Calculator menu, concerning the menu command
that brings up a Preferences panel. Because our Calculator application doesn't have a Preferences panel, we
should remove this menu item.

14. Still in IB, select the Calculators Preferences menu item by clicking it once.

15. Type Command-X to cut the menu item from the menu. Your menu should now look like the one in
Figure 6-7.

Figure 6-7. Newly configured Calculator application menu in IB (no Preferences item)

16. Type Command-S to save the MainMenu.nib file.

6.2.3 Creating the About Box Nib

To complete our About box addition, we will create a separate nib for the About box. This nib will be loaded
by the loadNibNamed:owner: message that the Controller's showAboutPanel: method sends to the
NSApplication object.

17. Choose IB's File New command. IB's Starting Point panel will appear.

18. Select Cocoa Empty, as shown in Figure 6-8, and click New.

Figure 6-8. Creating a new empty nib in IB

Note that there are now two Nib File windows at the lower left of the screen, one for MainMenu.nib and
the other ("Untitled") for the new nib that we created.

19. Type Command-S to save this new nib, and you'll see a "Save as" sheet slide out from under the title
bar.

20. If necessary, click the down arrow button to reveal the full "Save as" sheet. Find the folder
Calculator/English.lproj (the English-language project directory of the Calculator source
code), shown in Figure 6-9.

Figure 6-9. Saving a new nib for the About box in IB

21. Save the new nib as AboutPanel.nib. Before saving, IB will ask you if you want to add the new
nib to the Calculator project, as shown in Figure 6-10. Click Add.

Figure 6-10. Adding the new AboutPanel.nib to the Calculator project

After you add the new nib, note that the name in the title bar of the second Nib File window changes to
AboutPanel.nib, as shown in Figure 6-11. Note also that there are only two instance objects, File's
Owner and First Responder, in the new nib (compare with MainMenu.nib in Figure 6-11). Because IB
knows this is an empty auxiliary nib, it doesn't automatically provide you with MainMenu and Window
instances, as it did for the main nib. Clearly, another MainMenu object is not needed. Also, if you activate
PB, you'll notice that AboutPanel.nib has been added to the Calculator project as a resource, alongside
MainMenu.nib and InfoPlist.strings. Thus, when the Calculator application is built,
AboutPanel.nib will automatically be copied into the Calculator.app application bundle.

Figure 6-11. New AboutPanel.nib window (left)

22. If PB is active, double-click AboutPanel.nib in PB's main window to reactivate AboutPanel.
nib in IB. (If you double-click any file in PB's Groups & Files pane, PB will open that file in the
appropriate application.) This step may not be necessary.

23. Back in IB, make sure the AboutPanel.nib window is active (or key). To simplify the screen, we
recommend that you minimize the MainMenu.nib window and hide the other applications.

24. Click the Cocoa-Windows button (which should be the fourth button from the left) in IB's Palettes
window toolbar. See Figure 6-12.

Figure 6-12. Cocoa-Windows palette in IB

25. Drag the icon with the Panel label from the Cocoa-Windows palette and drop it in the
AboutPanel.nib window (you can also drop it on the desktop). This will create an empty panel
with the title "Panel" and will add the panel to the AboutPanel.nib nib. See Figure 6-13.

Figure 6-13. New panel (right) and updated AboutPanel.nib with panel icon

26. Click anywhere inside the new panel to select it, then type Command-1 to bring up the NSWindow
Attributes Info dialog (NSPanel is a subclass of NSWindow).

27. Change the title of the panel to "About the Calculator" in the Info dialog.

28. Click the Cocoa-Views button (which should be the second one from the left) at the top of IB's
Palettes window.

29. Customize the panel's text by dragging and dropping text icons (e.g., System Font Text) from the

Cocoa-Views palette into the panel.[3] Type Command-T to bring up the Font panel to change the
size, etc. of the type. See what we did in Figure 6-14. (Your About box won't look exactly the same
as our screen shot yet, but it doesn't matter.)

Figure 6-14. Newly customized About box

30. Now drag the horizontal-line icon from below the radio buttons in the Cocoa-Views palette and drop
it in the new panel. Resize it and change its location to be a separator, as shown in Figure 6-14. Also,
resize the panel itself as appropriate.

Note that we've left some space at the upper right of the "About the Calculator" panel. We'll use that space to
place our application icon before the end of the chapter.

Recall that we want the Controller instance to load AboutPanel.nib when the user chooses our
Calculator's Calculator About Calculator menu command. We've already set up the target/action
connection from the menu command to the Controller, but we have not yet set up any communication
between the Controller and the About box. The About box is part of the separate AboutPanel.nib, and
this nib doesn't even "know" that a Controller class exists. You can see this by looking at the subclasses of

NSObject under the AboutPanel.nib Classes tab - there's no Controller class. We'll set up the required
linkage between the new nib and the Controller in the next few steps.

31. Select the NSObject class in the Classes pane in the AboutPanel.nib window.

Note that the Controller class does not appear (recall that it did show up in the MainMenu.nib window).
To change this, we'll make IB read the Controller.h information into AboutPanel.nib.

32. Choose the Classes Read Files menu command, and the Read Files dialog will open.

33. Browse the filesystem to select the Controller.h file (under ~/Calculator) in the Read Files
panel, then click the Parse button.

The Controller class should now show up in the AboutPanel.nib window, as shown in Figure 6-15.
Now AboutPanel.nib knows about the Controller class outlets and action methods, and it also knows
that it is a subclass of NSObject. Of course, all of this information is contained in Controller.h.

Figure 6-15. Controller class in AboutPanel.nib window

Alternatively, you could have informed AboutPanel.nib about the Controller class by simply dragging
the Controller.h file icon from the Finder or PB and dropping it into the AboutPanel.nib window.
When you do this, IB will automatically parse the Controller class definition on disk and insert the
Controller class into the AboutPanel.nib class hierarchy. We'll use this quicker technique in subsequent
chapters.

We still need to make a connection from the Controller instance (created by MainMenu.nib) to the About
box object (created by AboutPanel.nib) in order to initialize the Controller's aboutPanel outlet. We
cannot do this using a different Controller instance instantiated by AboutPanel.nib - we must use the
instance instantiated by MainMenu.nib, because that's the one that controls the running Calculator
application! To do this, we will use the File's Owner icon in AboutPanel.nib. The File's Owner is an

object that "owns" a nib.[4] It's the argument that is passed to the NSBundle class when the nib file is loaded.
We've already arranged for this argument to be the id of the Controller object that is running the Calculator
application, so all we need to do is to make sure that AboutPanel.nib sets the outlet when it is loaded.

34. Click the Instances tab in the AboutPanel.nib (not MainMenu.nib) window to see the three

objects for this nib.

35. Inform IB that the File's Owner in AboutPanel.nib will be of the Controller class. Do this by
clicking the File's Owner icon in the AboutPanel.nib window and then selecting Controller in
the File's Owner Info dialog, as shown in Figure 6-16. (If the Info dialog isn't visible, type Command-
1).

Figure 6-16. Changing the class type of the File's Owner in AboutPanel.nib

36. Make the aboutPanel outlet in the File's Owner point to the About box. Do this by first Control-
dragging from the File's Owner icon in the AboutPanel.nib (not MainMenu.nib) window to
the (About) Panel icon in the same window. Finish the job by double-clicking the aboutPanel
outlet in the File's Owner Info dialog. See Figure 6-17.

Figure 6-17. Setting the aboutPanel outlet to point to the About box

When AboutPanel.nib is loaded, it will create the About box. The last step we completed arranged for
the aboutPanel outlet in the File's Owner object (i.e., the Controller object that loads AboutPanel.
nib) to be set to the id of this newly created About box (represented by the Panel icon in AboutPanel.
nib).

You might still be wondering about the File's Owner. Recall the following Objective-C statement in the
Controller's showAboutPanel: method; when the program runs, this statement loads AboutPanel.nib:

[NSBundle loadNibNamed:@"AboutPanel.nib" owner:self]

The File's Owner is the object that is specified by the self in the clause owner:self. In this case, the owner is
the Controller instance (self) that sends the above message to NSBundle. Thus, the aboutPanel outlet in
the Controller instance is set to the id of the About box that is loaded.

The File's Owner icon is called a proxy object because it is not a real object; instead, it is a proxy for a real
object that was instantiated when another nib was loaded (in this case, that nib is MainMenu.nib). Setting
File's Owner outlets and sending messages to a File's Owner object are the easiest ways to communicate
between nibs.

Now, let's run the Calculator application and see how it works:

37. Activate PB and click the build and run button for the Calculator target. Save all files before
building.

38. With Calculator running, choose Calculator About Calculator.

The first time you choose the Calculator's Calculator About Calculator menu command, you may
notice a slight delay before the About box appears (and you may hear your hard drive reading the nib file).
This delay is the time that it takes to load the nib file AboutPanel.nib into memory. However, if you
close the About box and then choose Calculator About Calculator again, the About box should appear
immediately because it's being read from memory, not from disk.

39. Choose Calculator Quit Calculator.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.3 Adding Icons to Applications

Mac OS X uses icons - little descriptive pictures - in many places to represent programs
and their documents. Mac OS X also allows applications to change their icons while the
applications are running. For example, the Mail program uses the icon containing an
envelope to represent the application in the Dock and Finder. When Mail is active and you
have unread mail messages, the Mail program adds an icon badge to its icon in the Dock to
display how many messages are unread. As we've seen already, folders and documents also
have icons.

6.3.1 Viewing Icons with the icns Browser Application

Application icons are typically stored in a file with a .icns extension. Each such file
contains several images, of various sizes and bit depths, that are used by the Finder and
other applications. A .icns file can also contain an icon mask that is used for
transparency. Because bitmap images do not scale well, the .icns file format stores only
icons that are 12 x 16, 16 x 16, 32 x 32, 48 x 48, or 128 x 128 pixels. You can
simultaneously view all of the images for a given file with the icns Browser application,
located in the /Developer/Applications folder.

The Mac OS X Mail application icons are stored in the file /Applications/Mail.
app/Contents/Resources/app.icns. This file doesn't normally appear in the
Finder because the Finder hides system details from users. However, you can see the
contents of the app.icns file by first choosing Finder's Go Go to Folder command
and then entering /Applications/Mail.app/Contents/Resources/ inside it.
Following that, select the app.icns file and drag and drop it on the icns Browser
application icon in your Dock to see the window shown in Figure 6-18.

Figure 6-18. Viewing Mail's icons and masks in the icns Browser application

6.3.2 Creating Application Icon Files with IconComposer

To create a .icns file, use the developer's tool called IconComposer, which we described
briefly in Chapter 2. This tool's icon resides in the /Developer/Applications
folder. Note the screwdriver on IconComposer's icon, and contrast it with the icon for icns
Browser, which is a viewer, not a tool. IconComposer does not actually let you edit the
icons. Instead, it allows you to create a .icns file that is built by importing image files
created by other applications. For example, you might use Stone Design's Create program

to create a large image, then import this image at several resolutions into the .icns file.[5]

We're not very good artists, but we did manage to create the 128 x 128 pixel TIFF image
shown here.

The TIFF (Tagged Image File Format) format is a common bitmap graphics format in Mac
OS X. Our image was saved in a file called calc.tiff. We then launched
IconComposer and dragged the calc.tiff file icon from the Finder into each of the four
icon areas in IconComposer's window. (You can also drag in GIF files, or files of any other
image format that Mac OS X recognizes.) For each image where the resolution didn't
match, IconComposer warned us of this fact and asked us if we wished to use a scaled
version, as shown in Figure 6-19.

Figure 6-19. Dropping the calc.tiff Icon into IconComposer

1. Create an icon for your Calculator application using a graphics application. Store
the icon in a file called calc.tiff. If you don't have time to create an icon,
"borrow" one from an existing application or download one from the Web (be
aware of copyright).

2. Launch the IconComposer program from the /Developer/Applications
folder (or your Dock).

3. Drag the calc.tiff icon for your application into each of the icon wells in the
IconComposer's "Untitled" window, as shown in Figure 6-19.

4. Choose IconComposer's File Save menu command (or type Command-S) and
save the file in your Calculator project folder with the name AppIcon.icns, as
shown in Figure 6-20.

Figure 6-20. Saving our new AppIcon.icns file in IconComposer

In this example, we use the name AppIcon.icns for our application icon. However, you
can use any filename, provided that you tell PB which filename you are using. We shall see
this in Step 10 in the next section.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.4 Changing Calculator's Application Icon

To show you how to change the application icon for our Calculator, we'll assume that
you've saved a copy of the file AppIcon.icns in your ~/Calculator folder as we
described in the previous section. (If you haven't done this, copy the file with this name
from /Developer/Examples/AppKit/DotView or some other AppKit example).
Then we'll tell PB to use an image from AppIcon.icns for our Calculator's application
icon. When the Calculator program is compiled, the icon's image will automatically be
included in the Calculator's NSBundle folder.

1. Back in PB with Calculator.pbproj, choose Project Add Files.

2. Select the AppIcon.icns file, as shown in Figure 6-21, and click the Open
button.

Figure 6-21. Adding the AppIcon.icns file to the Calculator project

As shown in Figure 6-22, PB will prompt you as to whether or not you wish to copy the

items that you have just selected (e.g., the AppIcon.icns file) into the destination
group's folder. The setting of this checkbox does not matter, because you already copied
the AppIcon.icns file into your project directory.

Figure 6-22. Option to copy AppIcon.icns into project directory

3. Do not change any settings in the newly dropped sheet; simply click the Add
button.

The AppIcon.icns file should now show up in the Groups & Files pane (Resources
group) in the main PB window. We like keeping our files well organized in this pane, so
we'll create a new group called "Images" in which we'll store our icons. Grouping has no
real effect on your application, but it does make it easier to find files in large projects.

4. Choose PB's Project New Group command and rename "New Group" as
"Images".

5. Drag the AppIcon.icns file into the new Images group in PB's Groups & Files
pane and drop it when the little gray arrow turns into your highlight color.

Now we'll make the icon we just created be the application icon for the Calculator
application:

6. Select PB's vertical Targets tab (at the center, near the bottom of PB's main

window).

7. Make sure that Development is checked in the Build Styles pane (it should be
already).

8. Select Calculator in the Targets area, and another set of tabs will appear on the
right.

9. Select the newly appeared Applications Settings tab and focus on the Icon section,
as shown in Figure 6-23.

Figure 6-23. Setting the Application icon for our Calculator

10. Enter the filename AppIcon.icns in the "Icon file:" white text field area, as
shown in Figure 6-23, and hit Return.

11. Build and run your Calculator application in PB. As usual, save all files before
building.

12. With the application running, choose Calculator About Calculator. You
should see something similar to the screen shot in Figure 6-24 . Note that there is
no icon in the About box, but we'll change that in the next section.

Figure 6-24. The running Calculator application with customized About box (no icon

yet)

Although it doesn't always work right away, you should eventually see the application icon
in your Dock to represent the running Calculator application (see Figure 6-24). You should
also see it in the Finder when the Calculator application is selected in the ~/
Calculator/build/ folder. If your application icon doesn't show up right away, try
logging out and then logging back in - that worked for us.

13. Choose Calculator Quit Calculator.

6.4.1 Making the New Icon Appear in the About Box

When we created our new About box in AboutPanel.nib, we left a space for the new
application icon in the upper-right corner. In the following steps, we will add an
NSImageView object in our About box to help display our new application icon:

14. Back in IB, be sure that AboutPanel.nib is the active nib by clicking in its Nib
File window.

15. Click the Cocoa-Other button, which should be the third one from the left in IB's
Palettes window toolbar.

16. Add an NSImageView object to the About box by dragging its icon from the Cocoa-
Other palette and dropping it into the top-right area of the About box.

17. Click the Images tab in the AboutPanel.nib window. Note that there are two
copies of the icon we created, one labeled "AppIcon" and the other
"NSApplicationIcon".

18. Add our new application icon to the new NSImageView by dragging the AppIcon-
labeled icon from the Images pane in the AboutPanel.nib window and
dropping it on the NSImageView in the About box. See Figure 6-25 for the result
(your icon won't look exactly like this screen shot yet).

Figure 6-25. Adding our newly created application icon to the About box

19. Remove the border around the NSImageView object in the About box by clicking
the icon on the left in the Border area of the NSImageView Info dialog.)

20. Make sure that the image alignment is centered and scaling is set to
"Proportionally" in the NSImageView inspector. The result is shown in Figure 6-
25.

21. Back in PB, build and run your project. Save all files when prompted.

22. Choose the Calculator About Calculator menu command; you should see your
custom application icon, as shown in Figure 6-26.

Figure 6-26. The running Calculator application with the application icon displayed
in the About box

23. Choose Calculator Quit Calculator.

There is no limit to the number of images that you can add to your application. To add an
image to your project, simply drag the GIF, JPEG, or TIFF icon for that image file from
your Finder window and drop it into your application's nib window in IB or in the main
window in PB. Images that are stored in one nib cannot easily be used by objects in other
nibs. For this reason, it is usually better to store images in the project directory rather than
in a nib.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.5 Cocoa's NSImage Class

In the previous example, we used an NSImageView object to display an image in our
About box. The NSImageView class actually calls on another class, NSImage, to do its
work. NSImage is the workhorse class for all images within the Cocoa development
environment.

Cocoa uses objects of the NSImage class to display practically any kind of image on the
screen. In Cocoa Version 10.1, the NSImage class could handle all the following types of
images, and more:

● Portable Document Format (PDF)
● Tagged Image File Format (TIFF)
● Windows Bitmap Format (BMP)
● Graphics Interchange Format (GIF)
● Joint Photographic Experts Group format (JPEG)
● Macintosh Picture format (PICT)
● Untagged (raw) bitmap data

The NSImage class can also be extended on the fly by other programs that "register"

themselves as filter services.[6] Because your programs will use the NSImage class, they
too will be able to read images in any of these formats - without any additional work on
your part.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.6 Summary

In the first part of this chapter, we added a second nib to our Calculator application, and in
doing so provided that application with an About box. Using multiple nibs is a good way to
enhance the performance of your program; with multiple nibs, objects are created only
when they need to be used. In the second part of this chapter, we learned how to create a
Cocoa icons file and how to make this file the application icon for our Calculator. Finally,
we saw how to display this icon in our About box.

In the next chapter, we'll learn about delegation, a powerful tool for controlling the
functionality and extending the behavior of the Cocoa AppKit objects.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.7 Exercises

1. Change the name of the nib name in the showAboutPanel: method from
"AboutPanel.nib" to "No-such-nib.nib", but do not change the name of the actual
nib file. Recompile and run your program. What happens when you attempt to
display the About box? Why?

2. Revisit IconComposer and determine the meaning of the different icon resolutions
and bit masks.

3. Investigate the .icns files in the /Applications and /Developer/
Examples/AppKit folders. Use the Terminal or Finder's Go Go to Folder
command to open folders such as /Application/iTunes.app/Contents.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 6. Nibs and Icons

6.8 References

1. General PB reference:

http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilder/
ProjectBuilder.pdf

2. Creating photorealistic icons for Mac OS X:

http://www.onlamp.com/pub/a/mac/2001/05/24/aqua_design.html

http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilder/ProjectBuilder.pdf
http://developer.apple.com/techpubs/macosx/DeveloperTools/ProjectBuilder/ProjectBuilder.pdf
http://www.onlamp.com/pub/a/mac/2001/05/24/aqua_design.html

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part II: Calculator: Building a Simple Application

Chapter 7. Delegation and Resizing

In this chapter, we will modify our Calculator application so that a user can choose to work
with any of the following bases: base 2, 8, 10, or 16. To do this, we'll modify the Controller
class to keep track of the current base and update the display accordingly. We'll also have
to modify the keyboard-input routines to work with the proper base, called the radix, and
ignore keypresses (digit-button clicks) that are invalid for a particular base. Most
importantly, we will introduce the concept of delegation, a technique for specifying objects
that perform functions for other objects. As for the user interface, we'll set up a pop-up
menu (for the user to change the base) and show how to resize a window
programmatically.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.1 Handling Different Bases

The first step toward making our Calculator work with more than one base is to put a
control for changing the base in the Calculator window. We'd like to use a radio button
control, for several reasons. First, the radio button allows only one selection at a time,
which is how our calculator will work. Second, it's both an input and an output at the same
time - it shows a state and lets you change it. In addition to letting the user change the base,
the radio button matrix indicates which base is currently selected and shows at a glance all
of the choices. Unfortunately, the radio button idea has one major problem - it will take up
too much room in our small calculator window. Instead, we'll use a pop-up menu. It has all
of the qualities we need, including using only a small amount of space (although it doesn't
show all choices without a click).

1. Open your Calculator project in Project Builder by double-clicking the
Calculator.pbproj file (which you should have put in your Dock or Finder
toolbar).

2. Open your project's main nib in Interface Builder by double-clicking MainMenu.
nib in PB's Groups & Files pane.

3. Choose Interface Builder Hide Others to simplify the screen.

4. Select IB's Cocoa-Other palette.

5. Drag the pop-up menu icon from the Cocoa-Other palette and drop it in the middle
of the Calculator window, just below the white text area, as shown in Figure 7-1.

Figure 7-1. New pop-up menu in Calculator window with pertinent inspector

6. If necessary, type Command-1 to bring up the NSPopUpButton Attributes Info
dialog.

Note that NSPopUpButton, the AppKit class we're using to install our pop-up menu, is not
a menu; rather, it's a button that is a subclass of NSButton (see the class hierarchy in the
Nib File window in Figure 7-1). When you double-click the pop-up menu button in IB,
you'll see the three menu cells that the associated pop-up menu initially contains.

An on-screen pop-up menu is controlled by an instance object of the NSPopUpButton
class. An NSPopUpButton object creates an NSMenu object to handle its menu-like
functionality.

7. Click the Small checkbox near the bottom of the NSPopUpButton Info dialog to
make the pop-up menu smaller, as shown in Figure 7-1 (we don't have much room
left in our Calculator window).

8. Triple-click on the pop-up menu to expose the menu choices and simultaneously
select the first choice (Item1) for editing, as shown on the left in Figure 7-2.

Figure 7-2. Editing the pop-up menu items

9. Change "Item1" to read "Hex", then hit the Tab key.

10. Change "Item2" to read "Dec", hit the Tab key, and change "Item3" to read "Octal".
Your pop-up menu should now look like the one on the right in Figure 7-2.

We need one more menu item to allow a fourth option, "Binary" (base 2), as a choice for
Calculator end users. We'll do that next.

11. Select IB's Cocoa-Menus palette by clicking the icon at the left of the Palettes
window toolbar.

12. Drag the menu item labeled Item from the Cocoa-Menus palette and drop it below
the third menu item (Octal) in the pop-up menu, as shown in Figure 7-3.

Figure 7-3. Adding a new menu item to the pop-up menu

13. Double-click "Item" and change the text to "Binary" (see Figure 7-4).

Figure 7-4. Renaming the new menu item (left) and leaving "Dec" showing on the pop-
up menu (right)

14. Select the second item in the pop-up menu (Dec). We'll leave this item selected so
that the application will start up as a decimal calculator (remember that the way you
leave interface objects in IB is the way they'll appear when your application
launches, unless you write code to change the interface).

15. Close the pop-up menu by clicking in the Calculator window's background, but not
in the text area or on a button (that is, click above the text area but below the title
bar).

16. Resize the pop-up menu so that it takes up no more room than is needed (click it
once and drag a handle to make it smaller).

Your calculator window should look like the one on the right in Figure 7-4.

Pop-up menus work like a combination of the menus and buttons that we've used already.
Like menus and buttons, they send messages, but unlike either menus or buttons, the last
menu item selected remains visible on the top.

In a way that's similar to what we did with tags on the NSMatrix of digits in the previous
chapter, we'll now set tags for the new pop-up menu.

17. Double-click on the pop-up menu labeled "Dec" to expose all four menu items.

18. One by one, select each menu item (e.g., Hex) and make sure that its tag matches
the base that is displayed. That is, the Hex menu item should have a tag of 16, and
the Dec, Octal, and Binary menu items should have tags of 10, 8, and 2,
respectively. (See Figure 7-5.)

Figure 7-5. Setting the tag of a pop-up menu item

19. As before, select the Dec item and close the pop-up menu by clicking in the
Calculator window's background, but not in the text area or on a button.

Your calculator window should still look similar to the one shown on the right in Figure 7-
4.

Tags have no effect on the outward appearance of any object.

7.1.1 Modifying the Controller Class

To make the Controller work with this new NSMatrix that contains a pop-up menu, we'll
create a new action method called setRadix: that will be invoked whenever the user selects
one of the radix choices from the pop-up menu. This setRadix: method will find out which
base was selected in essentially the same way that the enterDigit: method in Chapter 5
found out which digit button was clicked - it will examine the tag of the sender of the
message. To keep track of the radix that the user selected, we'll also add a new instance
variable called radix to the Controller class.

20. Back in PB, insert the radix instance variable and the setRadix: action method

declarations shown here in bold into Controller.h:

. . .
@interface Controller : NSObject
{
 IBOutlet id readout;
 BOOL enterFlag;
 BOOL yFlag;
 int operation;
 double X;
 double Y;
 IBOutlet id aboutPanel;
 int radix;
}
- (IBAction)clear:(id)sender;
- (IBAction)clearAll:(id)sender;
- (IBAction)enterDigit:(id)sender;
- (IBAction)enterOp:(id)sender;
- (void)displayX;
- (IBAction)doUnaryMinus:(id)sender;
- (IBAction)showAboutPanel:(id)sender;
- (IBAction)setRadix:(id)sender;
@end

Next we'll create a function that will convert long integers to binary representations in
ASCII characters. We'll need this function in order to display integers of all bases in the
text area at the top of the Calculator window.

21. Insert the following ltob() function into Controller.m before the
@implementation directive:

NSString *ltob(unsigned long val)
{
 int i;
 char buf[33];
 for (i=0; i<32; i++) {
 buf[i] = (val & (1<<(31-i)) ? '1' : '0');
 }
 buf[32] = '\0';
 for (i=0; i<32; i++) {
 if (buf[i] != '0') {
 return [NSString stringWithCString:buf+i];
 }
 }
 return [NSString stringWithCString:buf+31];
}

A function in your class implementation file can be used by any other part of your program
- it works like (and is) a regular C-language function. (Note that the function does not have
access to the class instance variables (e.g., radix) because it is outside the class
implementation.) The ltob() function just listed changes a long integer into an ASCII
binary representation. It places that ASCII representation in a buffer, then uses this buffer
to create an NSString object, which is the return value of the function. We need this
function because Cocoa lacks a general-purpose function for converting integers to ASCII-
encoded strings of arbitrary bases.

22. Insert the following setRadix: method into Controller.m immediately before
the @end directive:

- (IBAction)setTadix:(id)sender
{
 radix = [[sender selectedCell] tag];
 [self displayX];
}

This method sets the radix instance variable to be the tag (2, 8, 10, or 16) of the pop-up
menu item that was selected and updates the X register.

23. Replace the original displayX method in Controller.m with the new one that
follows:

- (void)displayX
{
 NSString *s=nil;

 switch(radix) {
 case 16:
 s = [NSString stringWithFormat:@"%x",(int)X];
 break;
 case 10:
 s = [NSString stringWithFormat:@"%15.10g",X];
 break;
 case 8:
 s = [NSString stringWithFormat:@"%o",(int)X];
 break;
 case 2:
 s = ltob((int)X);
 break;
 }

 [readout setStringValue: s];

}

(Remember to replace the entire displayX method; do not leave the old displayX in place.)

This new displayX method converts the contents of the X register to the base (radix) that
the user previously selected and displays the result in the Calculator window's text display
area. (Recall that the readout outlet points to the NSTextField object near the top of the
Calculator window.) Note that the base is "known" to displayX through the radix
instance variable. Because radix is an instance variable, it is accessible to any Controller
method.

In order for the radix instance variable to be set to the user-selected base, we need to
arrange for the pop-up menu to send the setRadix: message to the Controller. As always,
when we need an on-screen object to pass information to a custom object, we must set up a
target/action connection in IB. But IB doesn't know about the setRadix: action method yet,
so we must first read the new Controller class definition into IB:

24. Make sure that you save the two Controller class files in PB before proceeding (File
 Save All).

25. Back in IB, select the Classes tab in MainMenu.nib, then select the Controller
class (under NSObject) in the class hierarchy. (The easiest way to find the
Controller class is simply to type C in the Search field - try it!).

26. Choose IB's Classes Read Controller.h menu command (note that you don't
have to search for the class interface file in the filesystem, but you do have to with
Classes Read Files).

The new setRadix: action method we declared in Controller.h should now show up
in the Controller Class Info dialog, as shown in Figure 7-6.

Figure 7-6. Reading the new setRadix: action method into IB

Next, we'll set up a target/action connection involving this method.

27. Select the Instances tab in the MainMenu.nib window.

28. Control-drag from the pop-up menu to the Controller object, as shown in Figure 7-
7. (The previous step is actually unnecessary, because IB will automatically switch
to the Instances pane when you Control-drag a connection to the Nib File window.)

Figure 7-7. Connecting the pop-up menu to the Controller with setRadix:

29. Arrange for the pop-up menu to send the setRadix: action message to the
Controller by double-clicking setRadix: in the NSPopUpButton Info dialog, as
shown in Figure 7-7.

30. Back in PB, click the build and run button. Save all files when prompted.

31. With Calculator running, click the digit button labeled "9".

Nothing happens! What's worse, there are ominous messages colored in red in PB's Run
pane, as shown in Figure 7-8. What's wrong?

Figure 7-8. Error messages after clicking "9" in running Calculator

Before you panic, try the following:

32. Click the Dec pop-up menu and then click Dec again. The decimal digit 9 should
appear.

33. Click the pop-up menu again and drag to Octal. The octal equivalent of decimal 9,
namely 11, should appear.

34. Click the pop-up menu again and drag to Binary. The binary equivalent of decimal
9, namely 1001, should appear.

35. Quit Calculator.

The problem that occurred when we first clicked the 9 button is a lack of programmer
initialization. Objective C initializes all of an object's instance variables to 0, so when our
Calculator started running, the radix instance variable had the value of 0. As a result, the
switch statement in the displayX method didn't execute any of the options - and no value
was set to the variable s, which remained initialized to nil. That's what caused the assertion
failure.

One solution is to hardcode the initialization of the instance variable radix in
Controller.m. We could set radix to 10 because we set our pop-up menu in IB to
start at Dec. But where can we do this initialization, and what are the other possibilities?

Our solution will be to create a new method in the Controller class, which is invoked
automatically when the application starts up. Cocoa gives us three clean ways to specify

initialization code for objects in a user interface:[1]

The awakeFromNib method

We can specify an initialization with Cocoa's awakeFromNib method. Cocoa
automatically invokes the awakeFromNib method, if such a method exists, for
every object it unarchives from a nib file. It does this after all of the objects have
been unarchived and connected.

The notification system

We can use Cocoa's notification system, which allows objects to broadcast
messages without designating connections in advance.

Delegation

We can use a technique called delegation, where another object is delegated the
responsibility of responding to certain types of messages sent to the delegating
object.

We'll use the delegation technique to solve our current initialization problem because it fits
nicely in the Calculator application. Later in the book, we'll use both of the other
techniques.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.2 Delegation

Cocoa uses a technique called delegation to allow objects to specify other objects, called delegates, to handle
certain messages for them. Thus, one object can delegate to another object the responsibility for handling
messages of a certain type. Delegation gives the programmer a system for modifying or controlling the
behavior of Cocoa's more complicated objects, such as those of type NSApplication and NSWindow, without
having to subclass them. Typically, delegation is used to control the behavior of an object or to invoke a
method automatically in response to an action performed by a user.

An object sends its delegate specific messages under specific circumstances. Before the object sends the
message, it checks to see if the delegate can respond to the message by interrogating the delegate with the
respondsToSelector: message. If the delegate doesn't implement a method for a specific message, the message
simply isn't sent! (The sender must interrogate the delegate, because if a delegate receives a message for which
it doesn't have a corresponding method, the program will generate an error.)

For more information about respondsToSelector: and similar messages, see the documentation for the
NSObject class. The respondsToSelector: method is defined in the root NSObject class and thus is inherited
by all other objects.

7.2.1 Should, Will, and Did Delegates

Cocoa has three principal types of messages that are sent to delegate objects: Should, Will, and Did messages.
Both Should and Will messages are sent before something happens (e.g., before a window closes). When the
delegate is sent a Should message, the delegate can change the sender's behavior by responding in a certain
way. On the other hand, a Did message gets sent after a particular event takes place (e.g., after a window
closes). A Did message notifies the delegate object that something has occurred. At that point, it's too late to
change the behavior, but you might want to do something in response to an action that another object has taken.

There are dozens of different delegate messages implemented by various Cocoa classes. In Tables 7-1 and 7-2,
we list a few typical Will, Should, and Did delegate methods that are implemented by the NSApplication object.
In these tables, as in earlier ones, we'll use the same type conventions used in Apple's Cocoa documentation:
methods are in bold type, arguments are in italic type, and data types are in normal type.

Table 7-1. Typical Will and Should messages

Will message When message is sent to delegate

(void)applicationWillFinishLaunching:
(NSNotification *)aNotification

Before the application is finished launching. The
argument to this delegate method (and many
others) is an NSNotification object from the
Foundation.

(void)applicationWillUnhide: (NSNotification *)
aNotification

Before the application is unhidden.

(void)applicationWillUpdate: (NSNotification *)
aNotification

Before the Application object updates the
application's windows.

(NSApplicationTerminateReply)
applicationShouldTerminate: (NSApplication *)
sender

When the NSApplication object receives a
terminate: message. This method lets you clean
up the application - for example, shutting down
databases and saving or closing any open files
before it terminates. Return NSTerminateNow to
allow the application to terminate now,
NSTerminateCancel to cancel termination, or
NSTerminateLater to ask for more time. (If the
delegate responds with NSTerminateLater, it
will be sent another
applicationShouldTerminate: message.)

Table 7-2. Typical Did messages

Did message
When message is sent to

delegate

(void)applicationDidBecomeActive: (NSNotification *)aNotification After the application is activated

(void)applicationDidHide: (NSNotification *)aNotification After the application is hidden

(void)applicationDidFinishLaunching: (NSNotification *)
aNotification

After the application has been
launched and initialized, but
before it receives its first event

(void)applicationDidResignActive: (NSNotification *)aNotification
After the application is
deactivated

(void)appDidUnhide: (NSNotification *)aNotification After the application is unhidden

(void)appDidUpdate: (NSNotification *)aNotification
After the Application object
updates the application's
windows

Delegate methods let you do fairly complicated things with ease. For example, suppose that you set up a

delegate object for your application's NSApplication object, and that the delegate implements the
applicationShouldTerminate: method. When the user chooses the Quit menu command from your
application, the NSApplication object receives the terminate: message and in turn sends the
applicationShouldTerminate: message to its delegate. The delegate's applicationShouldTerminate: method
could then display a panel asking the user "Do you really want to quit?" If the user answers "No," the delegate
returns NSTerminateCancel to the NSApplication object, and the application doesn't terminate. If the user
answers "Yes," the delegate returns NSTerminateNow, and the application terminates.

Not every class in the AppKit makes use of delegation, but many do. Frequently, you can accomplish the same
thing with either delegation or subclassing. If you have a choice, use delegation! Delegation is simpler and
generally easier to debug than subclassing, and it makes your code more easily reusable. Delegation frees you
from having to subclass a lot of the AppKit classes. For most applications, you'll need to subclass only the
NSObject and NSView classes.

One of the most frequently used of the NSApplication delegate methods is applicationDidFinishLaunching:,
which is automatically sent after an application is initialized but before it receives any events. Later in this
chapter, we'll set up a delegate for our Calculator's NSApplication object and use
applicationDidFinishLaunching: to set the initial radix and perform other initialization tasks.

7.2.2 Specifying an Object's Delegate

An object's delegate is specified by an outlet instance variable appropriately called delegate. Table 7-3 lists
the main AppKit classes that support delegates.

Table 7-3. Main delegate-supporting AppKit classes

Class Reason for delegate object

NSApplication To receive information about the application's state

NSBrowser To fill the information stored in the browser

NSDrawer To control the display and hiding of drawers

NSFontManager To receive alerts when fonts are changed

NSImage To notify the application if an image isn't drawn

NSLayoutManager
To alert when the text in a container has been laid out, or when a layout has been
invalidated

NSMatrix To edit information stored inside a matrix

NSSavePanel To validate filenames

NSSound To alert when sounds are finished playing

NSSplitView To control resizing

NSTableView To control when table rows and columns are selected, displayed, and moved

NSTabView To alert when tabs are displayed and hidden

NSText To control editing and interception of keystrokes

NSTextField To control editing and interception of keystrokes

NSTextStorage To control the processing of edits

NSTextView To control the editing of text

NSToolbar To control the display of toolbars and the addition and removal of toolbar items

NSWindow To receive window events and control resizing

There are two ways to provide an object with a delegate:

● Connect the object to its delegate in IB.
● Use the object's setDelegate: method.

Which object should be the delegate? The answer to this question depends on your application. Sometimes you
will create a special object whose sole purpose is to be the delegate of one or more other objects. By using one
object as the delegate for several other objects, you can centralize control for handling events for common
objects. However, an object can also serve double duty, both being the delegate for another object and having a
life of its own.

In our example, we'll make our Calculator's Controller object be the delegate of the NSApplication object.
We'll do this for two reasons. First, the Controller class is still fairly simple. By making it the NSApplication's

delegate, we eliminate the complexity of creating a second class.[2]

The second reason to make our Controller object the NSApplication's delegate is that the initialization we want
to perform - namely, setting the Calculator's radix - needs to be done inside the Controller object itself. Thus,
the Controller is the logical object to be the NSApplication's delegate object.

7.2.3 Setting Up a Delegate Outlet in the Nib

We'll use IB to make our application's Controller instance the delegate of the NSApplication object. Recall that
the File's Owner object under the Instances tab in the MainMenu.nib window represents the Calculator's
NSApplication object; it's the owner of MainMenu.nib.

1. In IB, select the Instances tab in the MainMenu.nib (Nib File) window.

2. Control-drag from the File's Owner icon to the Controller instance icon inside the MainMenu.nib
window.

3. Double-click the delegate outlet to complete the connection, as shown in Figure 7-9.

Figure 7-9. Delegate connection from File's Owner to Controller

Our Controller instance is now the delegate of the NSApplication object referred to as the File's Owner in IB.
Next we'll add a new outlet to the Controller class so that the delegate method can determine the initial menu

item (radix) that is selected in the pop-up menu.[3] This outlet, which we'll call radixPopUp, will be set to

the id of the NSPopUpButton that causes the pop-up menu of radixes to be displayed.[4]

4. Back in PB, insert the radixPopUp outlet into Controller.h:

...
@interface Controller:Object
...
 int radix;
 IBOutlet id radixPopUp;
}
...

5. Save the edited Controller.h file.

6. Back in IB, make sure the Controller class is selected in the Classes pane in the MainMenu.nib
window and then choose Classes Read Controller.h to parse the Controller class definition again
(so IB knows about the new radixPopUp outlet).

7. Select the Instances tab in the MainMenu.nib window.

8. Connect (Control-drag from) the Controller instance icon to the pop-up menu and double-click the
radixPopUp outlet in the NSPopUpButton Connections Info dialog, as shown in Figure 7-10.

Figure 7-10. Connecting Controller instance to pop-up menu with radixPopUp outlet

Note that this connection is in the opposite direction of a previous connection between these same two objects.

Two connections are listed in the bottom pane of the Connections Info dialog in Figure 7-10 (we set up both of
them). This is useful information for Cocoa programmers, because it lets you immediately see the destinations
of all of the outlets that have been set for a given class (Controller, in this case). If you click on one of the
connections listed, IB will redisplay the connection line for you.

Next, we'll set up the delegate method in the Controller class.

7.2.4 Adding the Delegate Method to the Controller

To receive the application delegate's applicationDidFinishLaunching: message in the Controller, all we need
to do is create a method with the name applicationDidFinishLaunching:. You can place this method between
the @implementation Controller and @end statements. Alternatively, you can create a second set of
@implementation and @end statements containing the delegate methods (that's what we've done below).

This separate definition helps isolate those methods specifically for delegation from the methods used for other
purposes.

9. Add all of the following code after the original @end directive in Controller.m:

@implementation Controller(ApplicationNotifications)
-(void)applicationDidFinishLaunching:(NSNotification*)notification
{
 radix = [[radixPopUp selectedItem] tag];
 [self clearAll:self];
}
@end

You can add as many Controller delegate methods as you want between the @implementation
Controller(ApplicationNotifications) and @end directives. ApplicationNotifications is called a
category. You can also use this syntax construct for adding methods to AppKit classes, but you will need to set
up separate interface and implementation files. You cannot use a category to add new instance variables to a
class, but methods in a category have full access to all of the instance variables defined in the object class itself.
Next we show the matching class interface for the Controller(NSApplicationNotifications) category:

10. Insert all of the following declaration code after the original @end directive in Controller.h.

@interface Controller(NSApplicationNotifications)
-(void)applicationDidFinishLaunching:(NSNotification*)notification;
@end

When the application starts up, the Controller's applicationDidFinishLaunching: method is automatically

executed. The method will set the radix[5] and then invoke the Controller's clearAll: method to display the
initialized X value in the Calculator's text area.

11. Build and run your application. In contrast to the last time, your Calculator should display the numbers
as soon as you start clicking the digit buttons. However, there are other problems that we need to fix.
We'll address them in the next section.

12. Quit Calculator when you're done playing around with it.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.3 Disabling Buttons for BetterMultiradix Input

You may have noticed that there is still a big problem with our Calculator - the keypad doesn't work
correctly in any base except for decimal. The reason for this failure lies with the following statement in
the enterDigit: method:

X = (X*10.0) + [[sender selectedCell] tag];

This statement multiplies whatever is in the X register by 10 and adds the tag of a digit button each
time one is clicked. Unfortunately, we don't want to multiply the X register by 10 if a radix other than
base 10 is in effect; instead, we want to multiply by the current radix. So, for a first pass, the 10.0 in
this statement should be replaced with radix.

1. Replace the 10.0 in the enterDigit: method in Controller.m with radix to get:

X = (X*radix) + [[sender selectedCell] tag];

But that's not the only change we need to make; we also have to change the keypad of buttons so that
particular buttons are deactivated when certain bases are selected. For example, a user shouldn't be
able to press the 8 button when the Octal base is chosen. Also, it would be nice to make buttons for the
numbers A, B, C, D, E, and F appear when the user selects Hex. We'll address all of these problems
and add the new features in the remainder of this chapter.

7.3.1 Accessing NSMatrix Cells with an NSArray Object

Every Cocoa button is either enabled or disabled. If a button is disabled, the black labeling on it turns
gray, and the button won't respond to the mouse. In the following steps, we'll modify the setRadix:
method so that each time the radix is changed, the method will scan all of the buttons in the digit-
button matrix and disable the ones whose tags are equal to or greater than the newly selected radix.

To scan all of the digit buttons in the NSMatrix, we'll need its id. We'll also need the id of each
individual button that the matrix contains. As we will see, the id of each cell inside an NSMatrix object
is stored in yet another Foundation object, called an NSArray. As its name implies, an NSArray
contains an array (or list) of other objects.

2. Insert the keyPad outlet declaration shown here in bold into Controller.h:

...
@interface Controller:Object
{
...
 IBOutlet id radixPopUp;
 IBOutlet id keyPad;
}

3. Save Controller.h.

Our program will use the keyPad outlet to learn the id of the NSMatrix object when the application
starts up. As usual, we'll arrange for this initialization in IB.

4. Now drag the Controller.h icon from PB's Groups & Files pane and drop it in the
MainMenu.nib window in IB.

This operation has the same effect as choosing IB's Classes Read Controller.h menu
command. You can also drag the Controller.h icon from the Finder and drop it in the
same place. Now MainMenu.nib "knows about" the new keyPad outlet in the Controller
class.

5. Connect the newly created keyPad outlet in the Controller instance to the NSMatrix object
that contains the digit buttons for your Calculator. Make sure you connect to the matrix and not
to a single digit button within the matrix (move the mouse near the edge of the matrix until you
see that it's surrounded by a connection wire box, as shown in Figure 7-11).

Figure 7-11. Connecting Controller instance to matrix with keyPad outlet

NSArray is an important class for Cocoa programmers; it's a generic class (actually called a
Foundation class) for maintaining a collection, or list, of other objects. The NSArray class has methods

for:

● Creating an array from a single object, or from a collection of objects
● Sending a message to every object in the list
● Counting the number of elements in the list
● Accessing a specific element in the list by number
● Creating a new NSArray from the existing array

After an NSArray is created and initialized, the collection of objects that make up the array never
changes. If you need to create an array to which objects can be added or removed, use an
NSMutableArray instead. This mutable (changeable) class has additional methods for:

● Adding an object to the list
● Adding an object to the list if it isn't already there
● Removing an object from the list

Refer to the Cocoa Foundation documentation for a detailed explanation of the NSArray and
NSMutableArray classes.

6. Back in PB, insert the code shown here in bold into the setRadix: action method in
Controller.m:

- (IBAction)setRadix:(id)sender
{
 NSArray *cells;
 int i;

 radix = [[sender selectedCell] tag];
 // Disable the buttons that are higher than selected radix
 cells = [keyPad cells];
 for (i=0; i<[cells count]; i++) {
 id cell = [cells objectAtIndex: i];
 [cell setEnabled: ([cell tag] < radix)];
 }
 [self displayX];
}

We'll explain the new code in setRadix: line by line. The following line sends the cells message to the
keyPad (NSMatrix) object, which causes the object to return the id of the NSArray object that holds
all of the NSMatrix's (button) cells:

cells = [keyPad cells];

Once we have the id (stored in the cells instance variable) of this NSArray object, we can easily
access the objects stored inside it. This line sets up a loop that will execute for each of the objects
stored in the NSArray object:

for (i=0; i<[cells count]; i++)

This line sets the cell local variable to be the id of the ith element in the NSArray object:

id cell = [cellList objectAtIndex: i];

The expression [cell tag] < radix in the following line returns YES if cell should be enabled
and NO if it shouldn't (YES and NO are specified by #define operators in the Foundation class
NSObjCRuntime.h file):

[cell setEnabled: ([cell tag] < radix)];

The outermost message then sets the cell to be enabled or disabled as appropriate for the current radix.
For example, if the radix is 8 (octal), all cells with tags less than 8 should be enabled (YES), while
cells with tags 8 or greater should be disabled (NO).

There are a variety of ways to loop over the objects stored with an NSArray. You can create an integer
variable and step through all of the variables, as we did earlier. Alternately, you can ask the array for
an objectEnumerator and step that enumerator through the contents of the array. For example, the
setRadix: method could be rewritten to look like the following (not necessary to implement):

- (IBAction)setRadix:(id)sender
{
 NSEnumerator *enumerator;
 NSCell *cell;

 radix = [[sender selectedCell] tag];

 // Disable the buttons that are higher than selected radix
 enumerator = [[keyPad cells] objectEnumerator];
 while (cell = [enumerator nextObject]) {
 [cell setEnabled: ([cell tag] < radix)];
 }
 [self displayX];
}

This revised version of the setRadix: method is smaller and more object-oriented, but some people
may find it harder to understand. It may also take a few thousandths of a second longer to run; on the
other hand, it may not. Ultimately, both versions of the method work equally well, but the object-
oriented version is easier to debug and easier to maintain. In general, you should use the
NSEnumerator class for iterating through NSArrays, rather than a for loop with the objectAtIndex:
method.

7. Save all pertinent files and build and run the Calculator application.

8. With Calculator running, click the digit buttons to display the number 258.

9. Now click the Dec pop-up menu button and drag to Binary. Note that the number 258 changes
to its binary representation and all the digit buttons except 0 and 1 are disabled, as shown in the
window on the left in Figure 7-12. The buttons turn gray because Cocoa buttons automatically
display their titles in gray when they are disabled.

Figure 7-12. Disabling digit buttons for different bases in Calculator

10. Next, click the Binary pop-up menu button and drag to Octal. Note that the number changes to
its octal representation and that the digit buttons 8 and 9 are disabled, as shown in the window
on the right in Figure 7-12.

11. Quit Calculator.

7.3.2 Coherence in Object-Oriented Programming

The changes to the setRadix: method bear mentioning, because they contain the essence of another
important object-oriented concept: coherence. Being coherent means being logically or aesthetically
ordered or integrated. In object-oriented programming, coherence means writing as little code as
necessary by writing code that figures out what it needs to know when it runs, rather than having
things preprogrammed. This way, if something changes, the code automatically reconfigures itself at
runtime.

In this example, the setRadix: method disables those buttons in the matrix that have a tag that is equal
to or greater than the current radix - so, for example, the buttons labeled 2-9 don't work when the
Calculator is in binary mode. But rather than hardcoding the keys, the setRadix: method needs to
disable the keys for each radix; we have setRadix: find these keys by scanning through the associated
NSArray object that contains the matrix cells. Likewise, rather than hardcoding into setRadix: the
number of buttons in the matrix, we have setRadix: determine the number by asking the NSArray how
many objects it contains. This way, we can change the number of cells in the matrix while in IB and
not have to make any changes to the setRadix: method.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.4 Resizing Windows Programmatically

We're not done with our Calculator - we still haven't built a system for entering the hexadecimal "numbers"
A, B, C, D, E, and F. Probably the easiest way to enter these hex numbers is to add another six buttons to
the keypad and put the letters on them. (Naturally, these buttons will have the tags 10-15.) Because we
don't need these buttons to be displayed all the time, our Cocoa Calculator will do something that no
physical calculator can do: it will make itself bigger when it is in hex mode (to make room for the extra
buttons), and then make itself smaller when they are no longer needed (i.e., in other bases).

To accomplish this magic, we need to learn more about how the NSMatrix, NSCell, and NSWindow
classes work:

● When we want to make our Calculator window bigger, the first question to ask is "How much
bigger?" We'll need to insert space for two more rows of buttons (six new hex-only buttons in
total). Each NSMatrix knows the size of its cells as well as the spacing between cells. We'll need to
query our NSMatrix to find out how much larger the NSWindow needs to be in order to hold two
more rows of buttons.

● After we know how much space to add, we'll need to resize the window and make sure that every
object in the window moves to the appropriate place during the resize operation.

● After the window is resized, we'll need to create the six additional buttons that we want and set
their tags appropriately.

● Finally, when we make the Calculator window smaller, we'll need to arrange to remove the two
rows of buttons that we just added.

7.4.1 Modifying the Calculator's Interface

The first thing that we'll do is modify the Calculator's interface so that the resize operation happens
seamlessly for the interface objects in the Calculator window.

The Cocoa autosizing system determines how objects shrink, expand, or move on a window when that
window is resized. A nice example of autosizing can be seen in the Mac OS X Mail application, which
stretches the messages list and message preview areas when you resize the main window, but does not
stretch the buttons or other controls. In our Calculator application, resizing is relatively simple, because
there are only two cases we need to be concerned with:

● When the user switches to base 16 (the Calculator window must get bigger to accommodate the two
extra rows of buttons)

● When the user switches from base 16 (the Calculator window must get smaller as the extra rows of
buttons are removed)

When either of these things happens, we want the text area display and some of the buttons to stay near the
top of the Calculator's window, but we want the keypad of digit buttons to stick to the bottom. We will
insert the new hex-only buttons A-F above the digit buttons 7, 8, and 9.

1. Back in IB, select the NSTextField that is the Calculator's text display readout.

2. Type Command-3 to bring up the NSTextField Size Info dialog.

The Size Info dialog, which is available for all subclasses of the NSView class, enables you to control an
object's position and resizing within a window. We'll start by focusing on the autosizing box at the bottom
of the Size Info dialog:

3. Click the bottom-most part of the cross in the Autosizing box of the Size inspector so that the
vertical line at the very bottom turns into a spring-like wire, as shown in Figure 7-13.

Figure 7-13. Setting the autosizing for the NSTextField display readout

The autosizing we've set in Figure 7-13 means that the NSTextField display area will "give" at the bottom
of the window and "stick" to the top of the window when the window is resized. Thus, during autosizing,
we are allowing the NSTextField to change its position relative to the bottom boundary of the window, but
not relative to the top boundary.

4. Set the autosizing for the NSMatrix containing the C and CA buttons to match the autosizing for
the NSTextField display readout.

5. Set the autosizing for the radix pop-up menu and the function keys (e.g., +, /) matrix to match the
autosizing of the display readout as well.

At this point, all of the interface objects in the Calculator window have the same autosizing setting, except
for the keypad, or digit-button matrix. The keypad needs a different autosizing setting because we want it
to stick to the bottom of the window, not to the top of it. The reason is that we will insert the six new hex-
only buttons above the digit buttons 7, 8, and 9.

6. Select the keyPad NSMatrix and set its autosizing to look like that in Figure 7-14.

Figure 7-14. Setting the autosizing for the NSMatrix of digit buttons

We'll make only a general statement about autosizing now, and then we'll move on. You can control the
selected object's position within a window by clicking the lines outside the inner box in the Size Info
dialog's Autosizing area, and you can control the object's size by clicking the lines inside the inner box.

Notice that we haven't entered any sizes such as how big the matrix is, how big the Calculator window is,
or how big the window has to grow. We don't need to find out this information ahead of time and hardcode
it into our program. Instead, we'll arrange for the Controller object to send messages to the NSMatrix and
NSWindow objects to find out this information. The Controller will then calculate how much larger the
window needs to grow in order to make the additional hex buttons visible and will send a message to the
NSWindow object to change its size accordingly.

7.4.2 Modifying the Controller Class

Next, we need to modify the Controller.h and Controller.m files to make the window bigger
when we switch to base 16 and smaller when we switch from base 16 to a different base.

7. Back in PB, replace Controller.m's setRadix: method with the much longer version that
follows. In contrast to the way we implemented the previous version of this method, we'll code the
method the object-oriented way this time.

- (IBAction)setRadix:(id)sender
{
 NSEnumerator *enumerator;
 NSCell *cell;
 int oldRadix = radix;

 radix = [[sender selectedCell] tag];
 if (radix!=oldRadix && (radix==16 || oldRadix==16)) {
 double ysize = [keyPad cellSize].height * 2
 + [keyPad intercellSpacing].height * 2;
 int row,col;
 NSWindow *win = [keyPad window];
 NSRect frame = [win frame];
 // If switching to radix 16, grow the window,
 // and keep the title bar in the same place
 if (radix==16) {
 frame.size.height += ysize;
 frame.origin.y -= ysize;
 [win setFrame:frame display:YES animate:YES];
 for (row=0;row<2;row++) {
 [keyPad insertRow:0];
 for (col=0;col<3;col++) {
 int val = 10 + row*3 + col;
 cell = [keyPad cellAtRow:0 column:col];
 [cell setTag:val];
 [cell setTitle:[NSString
 stringWithFormat:@"%X",val]];
 }
 }
 [keyPad sizeToCells];
 [keyPad setNeedsDisplay];
 }
 // If switching away from base 16, shrink the window
 // (keeping the title bar in the same place)
 else {
 frame.size.height -= ysize;
 frame.origin.y += ysize;
 [keyPad removeRow:0];
 [keyPad removeRow:0];
 [keyPad sizeToCells];
 [keyPad setNeedsDisplay];
 [win setFrame:frame display:YES animate:YES];
 }
 }
 // Disable the buttons that are higher than selected radix
 enumerator = [[keyPad cells] objectEnumerator];
 while (cell = [enumerator nextObject]) {
 [cell setEnabled: ([cell tag] < radix)];
 }
 [self displayX];
}

Don't worry if this code seems a bit complicated - it is a jump beyond what we've seen before! It uses a few
methods from the NSWindow and NSMatrix classes that have yet to be described, but we'll get to them
before the end of the chapter.

The first new line sets up the oldRadix variable to contain the old radix. We use this to see if the user

has changed the radix. If the user is changing the radix, and either the old or the new radix is base 16 (hex),
the window needs to be resized.

The first part of the resizing code fills in ysize, a variable that stores the amount of vertical space that the
window needs to grow or shrink. Because we are adding two new rows, ysize is exactly equal to twice
the height of the keyPad cells and twice the intercell spacing. We also ask the keyPad for the id of its
NSWindow object, so that we can eventually send a "resize" message to the window. We also get the frame
of the window, which is its current location and size on the screen.

If we are switching to radix 16, the window needs to get bigger. We add ysize to the window frame's
height, then use the setFrame:display:animate: method to make the NSWindow bigger. This method's
animate: argument, which we set to YES, is responsible for animating the stretching, which makes our
Calculator look like other Cocoa applications that animate their resizing.

Next, we insert the two rows of new buttons, using nested for loops. Each row is inserted at position 0,
which is at the top of the matrix. Each row will have three buttons: A, B, and C for the row immediately
above the row with 7, 8, and 9, and D, E, and F for the new top row in the matrix. The inner loop sets the
tag and title of each of the new buttons as appropriate for its position.

We follow by sending the matrix the sizeToCells message, which causes the NSMatrix to recalculate its
size given the fact that it now has two additional rows of cells. Finally, we send the matrix the
setNeedsDisplay message, so that the matrix automatically redisplays itself when the window is updated.

The second case - making the window smaller - is much simpler. We calculate the new smaller size of the
window, remove the top two rows, resize the matrix, note that the matrix needs to be redisplayed, and
finally resize the window.

8. Back in PB, build and run your upgraded Calculator, saving all files first.

9. Click the 2, 6, and 7 digit buttons, then switch to Hex via the pop-up menu. The window should
resize downward, and six new buttons should appear, as in the window on the right in Figure 7-15.

Figure 7-15. Calculator without (left) and with (right) hex buttons

10. Now switch to Binary, Octal, or Dec. The window should return to its original size.

11. Quit Calculator when you're done playing with your nifty new creation.

Strong Typing with Objective-C

There are two ways that you can specify a variable that holds a pointer to an object in
Objective-C. You can use the id type to declare a pointer to any kind of object. Alternatively, if
you know in advance what kind of object you are going to have, you can construct a pointer to
the specific object type by using the object's class name as a type. Thus, a pointer to an
NSArray object can be declared like this:

id anArray;

or like this:

NSArray *anArray;

The second way of declaring an NSArray is called strong (static) typing. Strong typing
provides better compiler type checking and the ability to directly access public variables stored
inside the NSArray object.

You can use strong typing with IB. For example, if you have an outlet that should be connected
only to an object that is of type NSWindow (or a subclass), you could declare that outlet like
this:

IBOutlet NSWindow *anOutlet;

You can also do this in IB's Class Info dialog, in the Outlets pane. Click the little black down
arrow next to an outlet to choose its (strong) type.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.5 Two Very Important Classes: NSWindow and NSView

In this section we'll describe the very important NSWindow and NSView classes in more
detail and list many of their most useful instance methods.

7.5.1 The NSWindow Class

NSWindow is one of the most important classes in the Application Kit. If you want to be
an effective Cocoa programmer, it is essential that you be familiar with the variety and
scope of NSWindow's many methods.

Every on-screen window displayed by a program is controlled by an instance object of the
NSWindow class. Each NSWindow object receives events from a program's
NSApplication object. Most mouse events are sent to the object within the window where
the mouse event took place (e.g., if an on-screen button is clicked, a mouseDown: message
is sent to the corresponding NSButton object). Keyboard events are sent to the object that
is the window's first responder, which we'll describe in detail in the next chapter.

Each window contains at least one instance of the NSView class (described shortly), called
the window's content view. Although you can work directly with a window's content view,
normally you will create subviews of the content view in which you do your actual drawing
and event processing. We'll discuss these ideas in great depth in the following chapters.

Some of the most common instance methods for NSWindow objects are listed in Table 7-4.
Recall that if an argument's data type isn't specified (e.g., sender), it's an id by default.

Table 7-4. Common instance methods for NSWindow objects

NSWindow instance method Purpose

- (id)contentView
Returns the id of the
window's content view.

- (void)makeKeyAndOrderFront:(id)sender

Makes the window the
key window and places
it in front of all other
windows on the screen.

- (void)center
Moves the window to
the center of the screen.

- (void)orderOut:(id)sender

Takes the window out
of the screen list, which
makes it invisible. The
window is still in the
Window Server's
memory; you just can't
see it!

- (void)performClose:(id)sender
Simulates a user's
clicking the window's
close button.

- (void)performMiniaturize:(id)sender
Simulates a user's
clicking the window's
miniaturize button.

- (void)setFrame:(NSRect)aFrame display:(BOOL)flag
animate:(BOOL)aFlag

Moves and optionally
resizes a window with
or without smooth
animation.

-(BOOL)setFrameUsingName:(NSString *)aName

Sets the window's frame
using a name stored in
the system defaults.
This is handy if you
want a program to
reappear in the same
location on the screen as
the location where it
was last run.

- (void)setFrameFromString:(NSString *)aString

Sets the window's frame
using a representation
stored in aString. This
is handy if you want to
remember a window's
position and size in a
file and then restore it
later.

- (void)setTitle:(NSString *)aString
Sets the window's title
in its title bar to aString.

- (void)setTitleWithRepresentedFilename: (NSString *)
aString

Sets the window's title
in its title bar to a
filename.

- (NSRect)frame

Returns the window's
frame; tells you where
the window is on the
screen and how big it is.

All of the methods available to the NSWindow class are described in the NSWindow
documentation. One of the easiest ways to read this documentation is by referring to
Apple's Developer web site: http://developer.apple.com. You can also use the class browser
that is built into PB. To do this, click the Classes vertical tab in PB's main window, click
the disclosure triangle next to NSObject, and then click the little book icon next to a class
such as NSArray. (See Figure 7-16.)

Figure 7-16. Viewing NSArray documentation in PB

http://developer.apple.com/

7.5.2 The NSView Class

NSView is the basic class for creating objects that draw in windows and respond to user
events. Just as everything drawn on a Cocoa screen is drawn in a window, practically
everything drawn inside a window is drawn with the help of NSView objects. For example,
the NSMatrix, NSTextField, and NSButton classes we've used in our Calculator
application are all subclasses of NSView.

Objective-C Public Variables

Objective-C classes can declare specific instance variables as public variables,
allowing them to be accessed directly from other parts of your program without
the need to go through accessor methods. Public variables are specified after the
@public declaration, as in the following example:

@implement MyClass : NSObject
{
 float val1;
 float val2;
@public
 float public_val1;
 float public_val2;

}
- init;
- (void)compute;
@end

Public variables can be accessed via C's arrow (->) notation, just as if the
variable anArray were a pointer to a structure (which in fact it is!).

You should generally refrain from using public variables in the classes you
design, because public variables make your objects less modular and more
difficult to update without causing future problems. Using public variables also
violates the notion of object encapsulation. Public variables are part of the
language specification for those few cases when you need the utmost efficiency
and speed, but in general, you should avoid using them.

Every window contains at least one view - the content view. This view covers the window
except for the title bar, resize handle, and border. The window's content view automatically
stretches and shrinks with the window when the window is resized.

Every view can have zero or more subviews. After a view draws itself, it redraws any of
the objects in its subview hierarchy (we'll say more about view hierarchies later) whose
appearance has been changed or altered. In this way, what we see on the Mac OS X screen
properly corresponds to what is stored in the computer's memory.

The NSView class is one of the most powerful abstractions in Cocoa's Application Kit.
Some of its most useful methods are listed in Table 7-5.

Table 7-5. Common instance methods for NSView objects

NSView instance method Purpose

- (void)addSubview:(NSView *)
aView

Adds aView as a subview to the NSView.

- (void)display

Causes the NSView to redisplay itself and all
of its subviews by invoking the drawRect:
method for all of these views. Do not invoke
this method; call setNeedsDisplay: instead.

- (void)drawRect:(NSRect)rect

Implemented by subclasses of the NSView
class to draw themselves. This single method
handles displaying on the screen, printing, and
scrolling. You normally do not call this
method, but instead allow it to be called by the
NSView class.

- (void)lockFocus- (void)unlockFocus

Locks/unlocks the drawing focus on an
NSView, so that all future Quartz drawing
commands are executed in this NSView. If
you are drawing inside a drawRect: method,
focus is automatically locked and unlocked for
your program (by the display method).

- (void)setNeedsDisplay:(BOOL)
aFlag

Causes this view (and all of its subviews) to be
redisplayed after the current event is finished
being processed. Call this method with the
argument YES rather than calling the display
method.

- (NSArray *)subviews
Returns the NSArray object that contains all of
an NSView's subviews.

- (NSView *)superview Returns the id of an NSView's superview.

- (int)tag

Returns the NSView's tag. By default,
NSViews have a tag of -1, but some NSViews
(such as NSControls) allow you to change
their tags to distinguish them from one
another.

- (id)viewWithTag:(int)aTag
Searches an NSView and all of its subviews
for a view with a given tag.

- (NSWindow *)window Returns the id of the NSView's window.

The rest of the NSView methods are described at Apple's Developer web site: http://
developer.apple.com.

http://developer.apple.com/
http://developer.apple.com/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.6 Summary

In this chapter we learned about delegation, a system that lets a programmer specify objects
that should automatically be sent messages when certain events happen. We used
delegation to catch the NSApplication object's applicationDidFinishLaunching: message,
which is the standard technique for specifying code that should be run when an application
is initialized.

Having done this, we modified our Calculator so that it could change its size using the
setFrame:display:animate: method. We also learned a little bit more about NSWindow
and NSView objects.

In the next chapter, we'll revisit our ongoing discussion of events - the basic data type used
by Cocoa to keep track of actions initiated by the user. We'll then see how events are
handled by the NSResponder class, the abstract superclass of NSApplication, NSView, and
NSWindow, which contains much of the Mac OS X event-handling mechanism.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 7. Delegation and Resizing

7.7 Exercises

1. The setRadix: method has gotten unwieldy. Split the functionality into two or more
methods. Justify your decisions about how you decided to break up the logic. Is it
possible to split up this method in such a way that you use fewer lines of code with
two methods than with one?

2. Add another base to the Calculator.

3. Add a second display to the Calculator so that it will display both hexadecimal and
decimal numbers at the same time.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part II: Calculator: Building a Simple Application

Chapter 8. Events and Responders

Our Calculator already handles events such as mouseclicks on buttons and menu items, but
all this was automatic; we haven't had to write any specific code to handle these mouse
events. In this chapter we'll learn more about events and the chain of objects that Cocoa
uses to respond to events. At the end of the chapter, we'll see how to "catch" events from
the keyboard in our Calculator application. This is the final chapter of the Calculator
application.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.1 Events and the NSResponder Chain

There are seven basic kinds of events that Cocoa developers need to be concerned about:

Mouse events

Generated by pressing, clicking, or moving the mouse

Keyboard events

Generated by a keypress or release

Tracking rectangle and cursor-update events

Generated when the cursor crosses the boundary of a predefined rectangular area
(tracking rectangle) in a window

Periodic events

Generated to notify an application that a certain time interval has elapsed

AppKit-defined events

Generated by the Application Kit when a window is moved, resized, or exposed, or
when the application is activated or deactivated

System-defined events

Generated by the system - for example, when the power is turned off

NSApplication-defined events

Custom events defined and generated by your application to be inserted into the
event queue

Of these, the mouse and keyboard events are usually the most important for developers.

8.1.1 What Is an Event?

A Cocoa event is a message and a corresponding object that the Window Server sends to an
application in response to some action taken by the user. Pressing a key on the keyboard
generates an event, as does releasing that same key. Pressing the mouse button in a window
generates an event, as does releasing the mouse button (and moving the mouse, too).

The Mac OS X Window Server, which was introduced in Chapter 1, is a low-level process
running in the background that is responsible for sending events to applications and
displaying images on the screen. It isolates you from the details of the Mac's hardware.
We'll discuss the Window Server in detail in the next chapter.

Events drive applications. Every action that a user takes is turned into an event by the
Window Server, which in turn sends the event information to the appropriate Mac OS X
application. Each window has an event mask that it uses to tell the Window Server which
events it wants to receive. We'll describe event masks in more detail later in this chapter.

What is actually sent to the application is an event record, in the form of an NSEvent
object. The NSApplication object stores events in an event queue.

8.1.2 The NSEvent Object

When your program receives an event, it is packaged in an NSEvent object. The types of
information that the object contains, along with the data types, is in the file NSEvent.h.
Search for this file via the Find or Classes (vertical) tab in Project Builder if you're curious
about the class interface.

Cocoa supports many different kinds of events. The following 21 events are listed in the
file NSEvent.h:

typedef enum _NSEventType {
 NSLeftMouseDown = 1,
 NSLeftMouseUp = 2,
 NSRightMouseDown = 3,
 NSRightMouseUp = 4,
 NSMouseMoved = 5,
 NSLeftMouseDragged = 6,
 NSRightMouseDragged = 7,
 NSMouseEntered = 8,
 NSMouseExited = 9,
 NSKeyDown = 10,
 NSKeyUp = 11,
 NSFlagsChanged = 12,
 NSAppKitDefined = 13,
 NSSystemDefined = 14,
 NSApplicationDefined = 15,
 NSPeriodic = 16,

 NSCursorUpdate = 17,
 NSScrollWheel = 22,
 NSOtherMouseDown = 25,
 NSOtherMouseUp = 26,
 NSOtherMouseDragged = 27
} NSEventType;

It's unlikely that you'll ever work with these event numbers, because whenever the
NSApplication object receives event numbers from the Window Server, it automatically
translates them into Objective-C messages. The corresponding methods are defined in the
NSResponder class.

NSResponder is the abstract superclass that contains Cocoa's event-responding mechanism.
Most of the classes that we have discussed so far in this book, including NSApplication,
NSWindow, and NSView, are subclasses of NSResponder. The NSResponder methods are
defined in the file NSResponder.h. The methods that are important for event handling
include the following.

- (void)mouseDown: (NSEvent *)theEvent ;
- (void)mouseUp: (NSEvent *)theEvent ;
- (void)mouseMoved: (NSEvent *)theEvent ;
- (void)mouseDragged: (NSEvent *)theEvent ;
- (void)scrollWheel: (NSEvent *)theEvent;
- (void)rightMouseDown: (NSEvent *)theEvent ;
- (void)rightMouseUp: (NSEvent *)theEvent ;
- (void)rightMouseDragged: (NSEvent *)theEvent ;
- (void)mouseEntered: (NSEvent *)theEvent ;
- (void)mouseExited: (NSEvent *)theEvent ;
- (void)keyDown: (NSEvent *)theEvent ;
- (void)keyUp: (NSEvent *)theEvent ;
- (BOOL)performKeyEquivalent: (NSEvent *)theEvent ;

This list contains about half of the event-handling methods available in NSResponder.
Each of the methods in the list has a pointer to an NSEvent object as its first and only
argument. By sending messages via this pointer to an NSEvent object, you can learn about
the NSEvent itself. Table 8-1 describes the messages that you would typically send to an
NSEvent object from your event-handler code.

Table 8-1. Important NSEvent methods

Data element Purpose

- (NSString *)characters
Returns the characters associated with a
key-up or key-down event.

- (NSString *)
charactersIgnoringModifiers

Returns the characters as they would have
been received if no modifier key (other
than Shift) were pressed.

- (int)clickCount
Returns the number of mouseclicks
associated with a mouse-down or mouse-
up event.

- (float)deltaX- (float)deltaY- (float)deltaZ
Returns the change in x, y, and z for
scroll-wheel, mouse-moved, and drag
events.

- (BOOL)isARepeat
Returns YES if the key event was caused
by a key autorepeating when the user held
the key down.

- (unsigned short)keyCode
Returns the hardware-dependent value of
the key that was pressed for key-down
and key-up events.

- (NSPoint)locationInWindow
Returns the location of the event in the
associated window's coordinate system.

- (unsigned int)modifierFlags
Returns the settings of the Shift, Control,
Option, and Command keys.

- (NSTimeInterval)timestamp

Returns the time of the event since
system startup. You may find it difficult
to translate this timestamp to an actual
time, but usually it's not necessary.

- (int)trackingNumber
Returns the number of the tracking
rectangle that was entered or exited, for
tracking-rectangle events.

- (NSEventType)type Returns the type of the event.

- (NSWindow *)window
Returns the window associated with the
event.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.2 Events and the NSApplication Object

After an event is translated into an NSResponder method, your program's NSApplication
object sends the corresponding message to the appropriate NSWindow (or other) object
within your application. The particular object in your application that receives the message
is determined by the type of message, as shown in Table 8-2.

Table 8-2. Important NSResponder methods

NSResponder method Sent to

mouseDown:, rightMouseDown:
The window where the mouse-down event
occurred

mouseUp:, rightMouseUp:
The window where the original mouse-down
event occurred

mouseDragged:,
rightMouseDragged:

The window where the mouse-dragged event
occurred

mouseEntered:, mouseExited:
The object that was specified when the
tracking rectangle was created (see Chapter
18)

keyDown: The key window

keyUp:
The same window that received the key-down
event

performKeyEquivalent: The key window

As we saw earlier, each one of these NSResponder methods has an NSEvent object as its

only argument. This NSEvent object contains essentially the same information that the Mac
OS X Window Server passes to the NSApplication object, but it's in a form that Cocoa
programmers can handle.

8.2.1 Responders and the NSResponder Chain

As we mentioned earlier, the NSView, NSWindow, and NSApplication classes are all
subclasses of the NSResponder class. NSResponder is the main class for handling events.
It's called an abstract superclass because its functionality is used via instances of
subclasses of NSResponder rather than by instances of NSResponder itself.

The NSResponder class declares a single instance variable called nextResponder, an id
that points to another object and is, of course, inherited by all NSResponder descendants (i.
e., by any class that inherits from NSResponder). When an NSResponder subclass (usually
NSView or one of its descendants) object receives an event, such as a mouseDown: event,
in its physical screen space, it tries to process the event. If it cannot do anything with the
event, it sends the event to the object pointed to by its nextResponder instance variable
- typically another NSView (called the superview) that "contains" the first NSView. This
forwarding of the event from NSResponder to NSResponder happens over and over again
until an object is found that will respond to the event, or until the event gets passed all the
way up this chain to the window itself. This sequence of nextResponders forms a
responder chain. The event-forwarding happens automatically if an NSResponder subclass
doesn't implement (override) a particular NSResponder method.

Look at Figure 8-1 for a simple example of a responder chain. The button is partially
obscured to indicate that it's a subview of the box. If a user clicks the on-screen NSButton
labeled "Button" and it doesn't respond to this mouseDown: event (let's say it's disabled),
the event is passed up the responder chain to the containing NSBox object labeled "Box",
the NSButton's superview. If the NSBox can't respond (and it usually doesn't - NSBoxes
are typically used only for appearance), the mouseDown: event is passed to the (invisible)
content view. The content view is an NSView object that covers the NSWindow object
labeled "Window", except for the title bar and border. If the content view can't respond, the
mouseDown: event is sent to the NSWindow titled "Window". Thus, the responder chain
of objects for this simple example is Button Box content view Window.

Figure 8-1. Responder chain: NSButton with superview NSBox in an NSWindow

NSApplication and NSWindow objects contain their own instance variables (in addition to
the nextResponder instance variable inherited from NSResponder) for the processing
of keyboard events. An NSApplication object contains an id pointer called keyWindow,
which points to the window in an application that is designated to accept keyboard events
(the key window changes in response to user events). Each NSWindow object contains an
id pointer called firstResponder, which points to the NSView object inside the
window that should be sent keyboard events when they are received from the
NSApplication object.

8.2.2 Mouse Event Handling

Here's what happens (automatically) when you press down a mouse button in a window:

1. The Window Server sends the NSEvent data structure for the mouse-down event to
your program's NSApplication object.

2. The NSApplication object sends a mouseDown: message (with the same NSEvent
structure as the argument) to the NSWindow object that controls the on-screen
window in which the cursor was located when the mouse-down event occurred.

3. The NSWindow object sends the hitTest: method to its content view (i.e., an
NSView object inside the window) to determine the lowest descendant that
contained the cursor when the mouseclick occurred. The returned view will be the
NSView that is "in front of" other views on the screen.

At this point, what follows depends on whether the window is the key window:

4. If the window is already the key window, the event is sent to the subview where the
mouseclick occurred.

If the window is not the key window, it first makes itself the key window, then
sends the acceptsFirstMouse: message to the subview where the mouseclick
occurred. If the subview returns YES, the NSEvent is sent to it. If the view returns
NO, no further processing takes place on the event.

Some NSViews, such as NSButton and NSSlider objects, accept the first mouseclick. Thus,
you can click a button in a window, and have the button respond to the mouseclick, even if
the window that contains the NSButton is not the key window. Other NSView-subclassed
objects, such as an NSTextView object, typically do not accept the first mouseclick. This
means that you must first click in the window to make it the key window before you can
successfully click in an NSTextView object inside the window. You can, of course, change
this behavior through subclassing.

As an example, try the following in the TextEdit application: open a non-empty file in
TextEdit, activate another application (that doesn't hide the TextEdit window), and then
single-click in the TextEdit window. The cursor does not move to where you clicked,
because the NSTextView object inside the TextEdit window returns NO when sent the
acceptsFirstMouse: message from the window.

If the NSWindow object is already key when the event occurs (and thus sends the event to
the subview determined by hitTest:), the following additional processing takes place:

5. If the subview cannot process the event, it sends the event to its nextResponder.
The nextResponder of an NSView object is by default its superview - that is, the
NSView that contains the NSView receiving the event.

6. If none of the subviews can process the mouseclick, it gets sent to the NSWindow's
content view. If the content view cannot process the event, the event gets sent to the
content view's nextResponder - the NSWindow itself.

For the most part, all of this handling of responders and first responders is automatic - you
don't have to worry about it unless you are trying to do something nonstandard.

Mouse events other than mouseDown: are handled a little differently. The mouseUp:
event is sent to the NSView object that was sent the corresponding mouseDown: event,
regardless of the position of the mouse when the button is released. This means that buttons
that have been pressed know when they are released, even if you drag the mouse and
release it in some other window.

The mouseEntered: and mouseExited: events are sent to the "owner" object specified by
the addTrackingRect:owner:userData:assumeInside: message (you'll find more on
these methods in Chapter 18). The mouseMoved: and mouseDragged: events are different
from other events because they are sent continuously, and therefore tend to "drag" down
the system performance. Use them only when necessary. (You can frequently get around
the need to catch mouseMoved: or mouseDragged: events by overriding other methods
inherited from the NSCell or NSControl classes, or by creating your own modal loops.)

8.2.3 Keyboard Event Handling

Keyboard events are handled differently from mouse events because a keypress doesn't
correspond to a particular point on the screen. Here's what happens when you press a key.

1. The Window Server sends the NSEvent data structure for the keyboard event to the
active application's NSApplication object.

At this point, what happens depends on whether a Command key is pressed (down). We'll
first continue our discussion assuming that a Command key is not down, then discuss the

case when a Command key is down.

2. Assuming that the Command key (or both of them, if your keyboard has two) is up,
the NSApplication object sends the keyDown: message to the NSWindow object
controlling the key window (via the NSApplication object's keyWindow instance
variable).

3. The NSWindow object that receives the keyDown: message sends the message to
the object pointed to by the window's firstResponder instance variable, which
is usually an NSView that can handle keyboard events.

4. If the firstResponder object cannot handle the keyboard event, it sends the event to
its nextResponder object. This may occur several times.

5. The nextResponder of an NSWindow's content view is the NSWindow itself. If the
keyboard event is returned all the way up the responder chain to the NSWindow,
the computer's system beep is played.

On the other hand, if the Command key is down, the NSApplication object sends the
performKeyEquivalent: message to every NSWindow object that contains a menu in its
window list, until one of the objects responds YES. In this way, windows other than the
key window can intercept Command-key events and act accordingly. If no menu intercepts
the event, Command-key events are handled just as any other event would be: they are
passed to the key window, which passes the event to the content view, which passes it, in
turn, down the responder chain. All of this event handling is done automatically for you by
the AppKit; all you need to do is assign a key equivalent in Interface Builder, and the
AppKit takes care of the rest.

8.2.4 An Event-Handling Example Using TextEdit

Suppose we drag the icon for a file - let's use Controller.h in this example - from the
Finder and drop it on top of the TextEdit application icon in your Dock. The Finder will
automatically launch the TextEdit application (if necessary) and send it a message to open
the Controller.h file for editing. Inside the TextEdit application, this message is
received by the NSApplication object, which translates it into an application:openFile:
message. TextEdit's NSApplication delegate receives this message and opens the file, as
shown in Figure 8-2.

Figure 8-2. TextEdit demonstration of first responder

There are several objects in the window titled "Controller.h". The title bar alone contains
three buttons, an icon, and a text field. Then there is an NSScrollView object, which
contains the NSTextView that actually displays the text.

When TextEdit starts up, the NSTextView is made the NSWindow's first responder, as
indicated by the blinking cursor that appears at the very beginning of the file. If you then
press a key, say "k", a keyboard event will be sent to the Controller.h window
because it is the key window. The letter "k" will appear at the beginning of the file, as
shown in Figure 8-2.

Now suppose you type Command-T to bring up the Font panel (dialog), then click on the
Font panel's title bar. If you watch carefully, you'll see that the blinking cursor in TextEdit's
Controller.h window disappeared. How did that happen?

When you type Command-T, the nib[1] for the Font panel is loaded into the memory of the
running application. When you click on the Font panel's title bar, you are telling the
NSApplication object that you want the Font panel to become the key window (panels are
special types of windows that are usually created as instances of NSPanel or its subclasses,
and NSPanel is a subclass of NSWindow).

Before making the Font panel the key window, the NSApplication object needs to find out
if the NSFontPanel object can in fact become a key window. To do this, the NSApplication
object sends the NSFontPanel object the canBecomeKeyWindow message. The
NSFontPanel responds in the affirmative. Although we don't have the source code for the
NSFontPanel class, it's a sure bet that it has a method for this class that looks something
like this:

- (BOOL)canBecomeKeyWindow
{
 return YES;
}

Once it knows that the NSFontPanel can become the key window, the NSApplication
object needs to see whether the text object in the main TextEdit window is prepared to give
up being the first responder. The resignFirstResponder message is sent to the TextEdit's
main NSWindow, which forwards the message to its NSTextView object. The
NSTextView object responds YES, indicating that it is willing to give up being first
responder. This also tells the NSTextView object to make its cursor disappear.

Now the NSApplication object can act to change the key window. It first sends the
resignKeyWindow message to TextEdit's main NSWindow, then sends a
becomeKeyWindow message to the NSFontPanel object. Finally, it sends the
NSFontPanel window the becomeFirstResponder message, to tell it that it has become the
first responder. All of this happens automatically, inside the Application Kit framework.

Suppose that after clicking the Font panel's title bar in TextEdit, you press the "2" key.
You'll hear the system beep, because although NSWindow is the first responder and key
window, it does not respond to the key "2". Now focus on (i.e., click in) the text area
immediately below the Sizes label in the Font panel. You'll see the blinking cursor in the
Font panel, and keypresses will be accepted. Try changing the font size to 20 with the
keyboard. The (Sizes) NSTextField object in the Font panel has become the first responder.
Before that change occurred, the NSWindow sent the acceptsFirstResponder message to
the NSTextField and received the answer YES. See Figure 8-2 for the result of our
TextEdit demonstration.

To recap, whenever you click in either an NSTextField or an NSTextView object (or on
any other NSView, for that matter), the containing NSWindow sends the
acceptsFirstResponder message to ask the object if it wants to become the first responder.
If the text displayed by an NSTextView or NSTextField object is editable or selectable, as
it was in our TextEdit example, the object answers YES. The acceptsFirstResponder
method for these objects presumably looks something like this:

- (BOOL)acceptsFirstResponder
{
 return YES;
}

After the NSTextField object in the Font panel answers YES to this message, the
containing NSWindow tries to make it the first responder by sending the
makeFirstResponder: message to itself (self), with a pointer to the NSTextField object
as the argument. The makeFirstResponder: method begins by sending the
resignFirstResponder message to the current first responder. If the current first responder
refuses to relinquish its role, it returns NO, and the NSWindow's first responder doesn't
change. If the current first responder returns YES, thereby agreeing to relinquish its role as
first responder, the makeFirstResponder: method sends the becomeFirstResponder
message to the potentially new first responder (the NSTextField object). If that object
refuses to become the first responder, it returns NO and the first responder doesn't change.

If that object agrees to become the first responder, the NSWindow's makeFirstResponder:
method sets the firstResponder instance variable to point to the NSTextField object.

The NSTextField object uses its becomeFirstResponder and resignFirstResponder
methods to control the display of the text cursor that is displayed at the point of entry.
When it receives a becomeFirstResponder message, it displays the cursor; when it
receives the resignFirstResponder message, it removes it.

8.2.5 Action Messages and the NSResponder Chain

When we described how the target and actions work in IB, we weren't entirely truthful. We
said that if you specify a target and an action for a slider, the slider sends that action
message to that target. For example, in Chapter 3 we connected the slider to the text field,
as shown in Figure 8-3 (ignore the Noise button). We then said that the slider sent the
takeIntValueFrom: message to the NSTextField.

Figure 8-3. Target/action connection from NSSlider to NSTextField

This isn't exactly true, even though it appears that way in Figure 8-3. Instead of having the
NSSlider object send the message directly to the NSTextField object, Cocoa uses
NSControl's sendAction:to: method to send the action message via NSApp, the single
NSApplication object that's a part of every Cocoa application. (Recall that NSSlider is a
subclass of NSControl and therefore inherits the sendAction:to: method). This allows
some actions to be context-sensitive - i.e., to change their behavior depending on which

NSView and NSWindow are currently selected.

For example, suppose you had a simple window with three text fields, as shown in Figure 8-
4. Suppose also that you chose the Edit Cut menu command. Cocoa needs some way
of sending the cut: action message to the object containing the piece of text that you've
selected (we've selected Field #1 in Figure 8-4). If the Cut menu cell had a specific fixed
target object - say, the middle field - the cut: message would often be sent to the wrong
place. Clearly, the target of the cut: message needs to change based on which text the user
has selected.

Figure 8-4. Window with three fields, only one of which can respond to the cut:
message at any instant

Look at the target of the Cut menu item in IB in Figure 8-5 - you'll see that it has been set
to the First Responder icon, not to any specific object. Furthermore, if you look at the
Connections Info dialog in Figure 8-5, you'll see a wide choice of actions to which a First
Responder object can respond (scroll down in the inspector to reveal more than 50!). This
is all especially confusing because there is no NSFirstResponder class. We describe what is
happening in the following paragraphs.

Figure 8-5. Cut menu item connected to First Responder

IB's target/action connections are implemented by Cocoa's NSActionCell class. The
NSActionCell class has an instance variable called target (actually _target) that
holds the id of the object being sent the action message, and an instance variable called
action that holds an Objective-C encoding of the action method. Part of the Objective-C
interface of the NSActionCell class is shown here:

@interface NSActionCell : NSCell
{
 // All instance variables are private
 int _tag;
 id _target;
 SEL _action;
 id _controlView;
}

If the target of an action message is nil, the Control object's sendAction:to: method
determines an appropriate receiver for the action by checking a variety of objects. The
Control object does the following, in order:

i. Begins with the first responder (typically an NSView) of the key window and
follows the responder chain (via nextResponder pointers) up the responder chain
through the NSWindow's content view to the NSWindow object itself, searching
for an object that can respond to the specific action.

ii. If none of those NSViews (or the NSWindow) can respond, the NSWindow's
delegate object is checked to see if it can respond.

iii. If the main window is different from the key window (as it was in our TextEdit
example when we typed in the font size), the NSApplication object next checks the
main window's responder chain and the main window's delegate.

iv. If none of those views or delegates can respond to the action, the NSApplication
object tries to send the message to the NSApplication object itself (NSApp) and,
finally, to the NSApplication's delegate.

The search continues until an object is found that implements the action method, and the
action method returns a value other than nil. If no object handles the message, the message
is ignored.

IB's list of first responder methods in the Connections Info dialog aren't defined in any
single class - IB simply starts you off with all of the methods from possible target classes
that Apple thinks you'll need. You're free to add your own whenever you want.

8.2.6 Other Kinds of Events

Other kinds of events are processed in slightly different ways. NSWindow-moved, window-
resized, and window-exposed events are sent directly to the NSWindow object associated
with the event. The remaining Cocoa events (application-defined events, system-defined
events, timer events, cursor-update events, application-activate events, and application-
deactivate events) are handled by the NSApplication object.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.3 The Event Loop

Other than the Tiny.m program in Chapter 4, we have not written a main() function
for any of our applications. That's because the PB template that was used to create our
Calculator application already contained a main() function.

Let's again look at the main.m file, which contains the main() function used by our
Calculator application:

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

Well, that's not terribly useful. All it does is run the NSApplicationMain()
function! What's going on here?

When NSApplicationMain() runs, it performs the following steps:

i. Processes any command-line options

ii. Sends the [NSApplication sharedApplication] class (or factory) message, which
creates the NSApplicaton object, initializes the display environment, connects the
application to the Window Server, and creates an autorelease pool

iii. Determines the main nib of the application (from the application plist) and then
loads this nib with the owner of NSApp, the newly created NSApplication object

iv. Sends the [NSApp run] message to start up the application's main event loop

The last step is the most important for our current discussion; it starts off the main event
loop, where much of the power of Cocoa is found.

8.3.1 The Main Event Loop

When the NSApplication object called NSApp receives the run message, it starts the
object's main event loop. The event loop is a section of code that reads events and performs
appropriate functions for those events. This is the primary place where the NSApplication

object receives events from the Window Server. The event loop runs until the
NSApplication object gets sent a stop: or a terminate: message. A stop: message causes
the run method to stop and returns control to the caller. A terminate: message causes the
application to quit gracefully, without returning control to the caller.

The NSApplication main event loop program does the following:

● If there is an event waiting, gets it and processes it.
● If there is a timer pending, executes it.
● If data is received at a watched Mach port, reads it and calls the appropriate

function. (See the discussion of Mach in Chapter 9.)
● If data is pending at a watched file descriptor, reads it and calls the appropriate

function.
● Repeats until a stop: message is received.

The most common way of breaking out of the NSApplication's main event loop is by
sending a terminate: message to NSApp. Here's what happens when the terminate:
message is received:

● If the NSApp object has a delegate that implements the appShouldTerminate:
method, the corresponding message is sent to the delegate.

● If the delegate's appShouldTerminate: message returns NSTerminateCancel or
NSTerminateLater, the terminate: method is aborted, and the main event loop
continues to run. (In the case of NSTerminateLater, a timer is set that will schedule
another terminate: message to be sent later.)

● Otherwise, the application is terminated with a call to exit().

The fact that Cocoa handles the main event loop for the programmer is one of the primary
differences between programming in Cocoa and programming in many other window-
based environments. Because Cocoa handles most events automatically, individual
programmers are freed from this tedious task, which in turn makes programs behave in a
more reliable and unified fashion.

Nevertheless, Cocoa does allow you to write your own event loop or take over the event
loop while something out of the ordinary is happening. Typically, you would do this for a
special purpose that isn't handled well by the Application Kit. For example, IB uses its own
event loop when you Control-drag a connection from one object to another; this special
event loop exits when the mouse button is released.

You can use the NSApplication method nextEventMatchingMask:untilDate:inMode:
dequeue: to construct your own event loop. This method returns the next event that
matches a mask that you provide. The mask allows you, for example, to read a mouse-up
event but ignore a periodic event or flags-changed event. These other events will be saved
until the main application event loop is running again.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.4 Catching Keyboard Eventsfor Our Calculator

In the remainder of this chapter, we'll make our Calculator easier to use by taking advantage of our new
knowledge of events and responder chains. The goal will be to let the user type digit keys (e.g., "5") on the
keyboard instead of clicking buttons in the Calculator's window.

Some of the functionality that we will implement in the following sections could be
implemented from within IB by assigning a key equivalent for each NSButton in
the NSButton Info dialog. We've chosen to show you this approach instead for
several reasons. First, we feel that this example shows many interesting details
about Cocoa, including how the NSArray and NSDictionary classes operate. This
example also shows how Objective-C allows you to "reach inside" the Cocoa
classes, even though you don't have their source code, and to change or augment
the way that they operate. Finally, some of the functionality that we describe - the
automatic enabling and disabling of keys depending on the current radix - cannot
easily be implemented from within IB.

8.4.1 Subclassing the NSWindow Class

We'll accomplish our goal by first subclassing the NSWindow class to form a new class called CalcWindow,
then changing the class of our Calculator window to CalcWindow. Subclassing NSWindow is a common
technique for intercepting all of the events that are destined for a window, rather than for a particular view in
that window. (This example is slightly contrived, because Cocoa also allows you to assign keyboard
equivalents to each key in IB. However, we wanted to show you how to subclass the NSWindow class, and this
is as good a time as any to do it.)

In addition to catching the keyboard events, our CalcWindow object needs to know what to do with them. To
accomplish this, we'll arrange for our CalcWindow object to scan its window for all buttons and make a table of
each button that has a title consisting of a single character. Each time the CalcWindow object receives a
keyboard event, it will consult this table to determine whether there is a corresponding button that should act as
if it has been clicked.

The first step is to subclass the NSWindow class in IB:

1. Open your Calculator project in PB by double-clicking the Calculator.pbproj file in your ~/
Calculator project directory.

2. Open your project's main nib in IB by double-clicking MainMenu.nib (under Resources in PB's
Groups & Files pane).

3. Choose Interface Builder Hide Others to simplify the screen.

4. Select the NSWindow class (under NSResponder) under the Classes tab in the MainMenu.nib
window.

5. Choose IB's Classes Subclass NSWindow command to create a subclass of the NSWindow class.

(Another way to do this is to Control-click inside the MainMenu.nib window and select Subclass
NSWindow from the resulting menu).

6. Change the name of this new subclass from "MyWindow" to "CalcWindow", as shown in Figure 8-6.

Figure 8-6. Creating a subclass of the NSWindow class

7. Choose IB's Classes Create Files for CalcWindow menu command to create the class interface and
class implementation files for the new class. The resulting new sheet is shown in Figure 8-7. (Again,
this step can be done by Control-clicking in the MainMenu.nib window.)

Figure 8-7. Creating class files for the CalcWindow subclass

Near the bottom of Figure 8-7, note that the files CalcWindow.h and CalcWindow.m have been created
and inserted into the Calculator (target) project. Make sure that the sheet that dropped down from your
MainMenu.nib title bar looks the same as the one in Figure 8-7.

8. Click the Choose button to finish the process of creating the two CalcWindow class files.

The previous two steps save us a bit of effort by creating the skeleton CalcWindow.h and CalcWindow.m
class files in the project directory and adding them to our project. You might take a minute to check your ~/
Calculator folder in the Finder to see that these two files were actually created in this folder. You might
also activate PB to see that the files have been added to the project under the Classes group in the Groups &
Files pane. By clicking these class filenames in PB, you can also see how little code has been generated for
CalcWindow. There are no instance variables or action methods in the files, because we didn't specify any in
IB. Currently, CalcWindow simply inherits all of its data and functionality from NSWindow and is essentially
the same class as NSWindow. We'll change that soon.

Next, we'll change the class of the Calculator window from NSWindow to CalcWindow.

9. Still in IB, click the Instances tab in the MainMenu.nib window.

10. Select the Calculator window by clicking the icon labeled "Window" (you can also select the window
by clicking in the background of the Calculator window itself).

11. Type Command-5 to display the Custom Class inspector for the Calculator window. The class of the
Calculator window is currently NSWindow.

12. Click CalcWindow in the inspector to change the Calculator window's class to CalcWindow, as shown
in Figure 8-8.

Figure 8-8. Changing the class of the Calculator window to CalcWindow

Before proceeding with our quest to capture keyboard events for our Calculator application, we need to learn
about Cocoa dictionaries.

8.4.2 Dictionaries

We will use an NSMutableDictionary object to determine whether incoming keyboard events match button
clicks in the window. The NSDictionary and NSMutableDictionary classes are provided by Apple as part of the
Cocoa Foundation framework of "basic" classes. "Mutable" means "changeable," and that describes the

difference between the two classes: NSDictionary objects cannot be changed after they are initialized, whereas
NSMutableDictionary objects can be changed. Dictionaries are data-storage objects; you can think of them as
arrays, except that the index is an object rather than an integer. Dictionaries are basically hash tables with a nice

interface.[2]

The following example should help you understand Cocoa dictionaries. The example creates an
NSMutableDictionary that contains only two NSString objects. The first object contains the string "Garfinkel",
and the second object contains the string "Mahoney". The key for the first object is an NSString object that
contains the string "Simson", and the key for the second object is a fourth NSString object, this one containing
the string "Michael". As the example shows, you can make a retrieval from an NSDictionary object using either
the original object that was used as the key when the first object was inserted, or a second object that is
logically equal to the original key. The comments mixed in with the code describe the program.

// Demonstrate the NSDictionary class

#import <Cocoa/Cocoa.h>

int main()
{
 // Every program must have an NSAutoreleasePool
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Create the dictionary
 NSMutableDictionary *dict =
 [NSMutableDictionary dictionaryWithCapacity:5];

 // Create the two key (index) objects
 NSString *key1 = [NSString stringWithCString:"Simson"];
 NSString *key2 = [NSString stringWithCString:"Michael"];

 // Create the first data object
 // Note that this uses a different NSString syntax than above
 NSString *dat1 = @"Garfinkel";

 // Insert data into the dictionary. Note the second insertion
 // does not assign the NSString object to a local variable.
 [dict setObject:dat1 forKey:key1];
 [dict setObject:@"Mahoney" forKey:key2];

 // Now show retrieval two different ways
 NSLog(@"The object for key1 is %@\n",
 [dict objectForKey:key1]);
 NSLog(@"Michael's last name is: %@\n",
 [dict objectForKey:@"Michael"]);

 [pool release];

}

If you save this program in the file dict.m, you can compile and run it in a (Unix) Terminal window as
follows:

% cc dict.m -o dict -framework Foundation
% ./dict
2002-02-02 00:02:13.998 x[369] The object for key1 is Garfinkel
2002-02-02 00:02:13.999 x[369] Michael's last name is: Mahoney
%

8.4.3 Implementing the CalcWindow Class

To implement the CalcWindow class, we'll use keyboard characters (in the form of NSStrings) for the (hash)
keys of an NSMutableDictionary and the ids of the associated NSButtons as the values. To build the dictionary
(or hash table), the CalcWindow object will search for all of the NSButtons contained in the Calculator window
that have single-character titles.

8.4.3.1 Methods for searching for button titles

In this section, we'll implement methods in the CalcWindow class that will search for NSButton object single-
character titles such as "2" and "+" and will build a corresponding NSMutableDictionary object, as described
earlier.

13. Edit the CalcWindow.h class interface file (in PB or elsewhere) and insert the five lines shown here
in bold (do not insert this code in the Controller.h file):

#import <Cocoa/Cocoa.h>

@interface CalcWindow : NSWindow
{
 NSMutableDictionary *keyTable;
}
- (void)findButtons;
- (void)checkView:(NSView *)aView;
- (void)checkButton:(NSButton *)aButton;
- (void)checkMatrix:(NSMatrix *)aMatrix;
@end

The new keyTable instance variable will point to the NSMutableDictionary object we'll create later. We'll
use the four new methods (findButtons, etc.) to search the Calculator window for all of the buttons, as
described in Table 8-3.

Table 8-3. Methods to search for buttons in the Calculator window

Method Purpose

findButtons Start searching the Calculator window's content view.

checkView:aView
Search the aView object. If aView is an NSButton object, check it with
checkButton:. If aView is an NSMatrix object, check all of its buttons with
checkMatrix:. If a subview is found, check it recursively with checkView:.

checkButton:
aButton

Check aButton to see if it has a single-character title. If so, add the button to the
NSDictionary object with the title as its key.

checkMatrix:
aMatrix

Check each of the buttons inside aMatrix by repeatedly invoking the checkButton:
method.

Now we'll describe the implementations of each of these CalcWindow methods in detail. CalcWindow's new
findButtons method simply removes all of the objects from the NSMutableDictionary object (keyTable) and
then invokes the checkView: method for the Calculator window's content view to set up the
NSMutableDictionary.

- (void)findButtons
{
 // Check all the views recursively
 [keyTable removeAllObjects];
 [self checkView:[self contentView]];
}

The checkView: method is more interesting than findButtons. It can be invoked with any NSView object in
the window as its argument, and it checks to see whether the NSView is of the NSMatrix class, the NSButton
class, or neither. (An NSView object is any object that belongs to a subclass or descendant class of NSView.) If
the NSView is of the NSMatrix or NSButton class, checkView: invokes the checkMatrix: method or the
checkButton: method (respectively). Otherwise, checkView: gets the list of subviews for the NSView passed
and invokes itself recursively for each one (yes, methods can invoke themselves recursively). In this manner,
all of the NSViews in the window are processed. We need separate methods to check the NSMatrix and
NSButton objects because the cells (i.e., NSCell objects) stored inside these objects are not subviews (cells are
not views).

The following code shows CalcWindow's new checkView: method:

- (void)checkView:(NSView *)aView
{
 id view;
 NSEnumerator *enumerator;
 // Log which aView is being processed; see PB for output
 NSLog(@"checkView(%@)\n",aView);
 // Process the aView if it's an NSMatrix
 if ([aView isKindOfClass: [NSMatrix class]]) {
 [self checkMatrix: aView];
 return;
 }
 // Process the aView if it's an NSButton
 if ([aView isKindOfClass: [NSButton class]]) {
 [self checkButton: aView];
 return;

 }
 // Recursively check all the subviews in the window
 enumerator = [[aView subviews] objectEnumerator];
 while (view = [enumerator nextObject]) {
 [self checkView:view];
 }
}

This checkView: method sends the isKindOfClass: message to the aView argument object to determine its
class (NSMatrix, NSButton, or other). If the aView object is of the NSMatrix class, the checkMatrix: method
is invoked. If the aView object is of the NSButton class, the checkButton: method is invoked. If aView is
neither an NSMatrix nor an NSButton object, the checkView: method recursively invokes itself for all of the
subviews contained within the NSView. Actually, the objects that are passed to checkView: are instances of
subclasses of the NSView class, not instances of NSView itself. However, because they inherit from the
NSView class, we still refer to them as "views."

CalcWindow's checkButton: method, shown in the following example, checks a button to see if its title is a
single character. If it is, the button is stored in the keyTable object (an NSMutableDictionary object that
we'll create when the CalcWindow object is initialized, as we'll see a bit later).

- (void)checkButton:(NSButton *)aButton
{
 NSString *title = [aButton title];
 // Check for a cell with a title exactly one character long.
 // Put both uppercase and lowercase strings into the dictionary.
 // The "c" key on the keyboard will clear, not display a hex "c".
 if ([title length]==1 && [aButton tag] != 0x0c) {
 [keyTable setObject:aButton forKey:[title uppercaseString]];
 [keyTable setObject:aButton forKey:[title lowercaseString]];
 }
}

This method uses the NSMutableDictionary instance method setObject:forKey: to insert the button's id,
namely aButton, into the dictionary object. The key is an NSString with the single-character title of the
button.

CalcWindow's checkMatrix: method now checks all of the NSButton objects in an NSMatrix. NSMatrix
objects must be checked separately, because the NSButtons that they contain are not subviews of the NSMatrix.

This was originally done for performance reasons.[3] The fact that NSCell objects are not views complicates
our task, but not significantly.

- (void)checkMatrix:(NSMatrix *)aMatrix
{
 id button;
 NSEnumerator *enumerator;
 enumerator = [[aMatrix cells] objectEnumerator];
 while (button = [enumerator nextObject]) {
 [self checkButton: button];
 }
}

This method first gets the list of cells (NSButtonCells, in our example) that are contained in the NSMatrix, then

invokes the checkButton: method for each of them.

Now we have the four methods that we need to set up the NSMutableDictionary object with key-value pairs.

8.4.3.2 Finishing off the CalcWindow class implementation

The CalcWindow class requires two additional methods in order to work properly. The first (keyDown:) is the
method that actually handles the key-down events. The other is the method that initializes the
NSMutableDictionary object.

- (void)keyDown:(NSEvent *)theEvent
{

 id button;

 button = [keyTable objectForKey: [theEvent characters]];

 if (button) {
 [button performClick:self];
 }
 else {
 [super keyDown:theEvent];
 }
}

This keyDown: method will be invoked only when a keyboard event is not otherwise handled by an object in
the NSResponder chain. It sends the objectForKey: message to the NSMutableDictionary object (keyTable)
to obtain the id for the NSButton whose title is the same as the keyboard character ([theEvent characters])
that was typed.

If no such NSMutableDictionary key exists, objectForKey: returns nil and keyDown: passes the original
message to its superclass to handle the event. If the key does exist, the keyDown: method sends the
performClick: message to the NSButton whose id is stored for the key. The performClick: message causes
the NSButton target object to perform as if it had been clicked. The message is not sent if the on-screen button
is disabled.

Finally, we need to set up an initialization method - the method that is automatically invoked when the
CalcWindow object is created and sets up the NSMutableDictionary object.

We typically create initialization methods in our subclasses by overriding one of the parent's initialization
methods. There are two NSWindow initialization methods to choose from for CalcWindow. If you look in the
NSWindow.h header file in PB, you'll find the declarations of these two initialization methods:

- (id)initWithContentRect: (NSRect)contentRect
 styleMask: (unsigned int)aStyle
 backing: (NSBackingStoreType)bufferingType
 defer: (BOOL)flag ;

- (id)initWithContentRect: (NSRect)contentRect
 styleMask: (unsigned int)aStyle
 backing: (NSBackingStoreType)bufferingType
 defer: (BOOL)flag

 screen: (NSScreen *)screen ;

One of these methods is the designated initializer of the NSWindow class. The designated initializer is the one
and only initialization method for a class that is guaranteed to be invoked by all of the other initialization
methods of that same class. Thus, if you subclass a class, you need only write a method for the designated
initializer method to catch all initialization events.

But which method is the designated initializer? The only way to find out is to read the documentation. The
designated initializer is typically the method that has the most arguments, but the NSWindow class is different.
Its designated initializer is the first (shorter) method listed. That's because the initWithContentRect:
styleMask:backing:defer: method was designated as the designated initializer before NeXTSTEP supported
multiple screens (note the one additional screen: argument in the last initialization method). It has thus been
left as the designated initializer for historical reasons.

We discussed the initWithContentRect:styleMask:backing:defer: method in detail in Section 4.3.1. Next,
we override this method to create and initialize the CalcWindow, which is like a normal window except that it
has an NSMutableDictionary that must be allocated. We also override the dealloc method to release the

keyTable that we created to prevent a memory leak:[4]

- (id)initWithContentRect:(NSRect)contentRect
 styleMask:(unsigned int)aStyle
 backing:(NSBackingStoreType)bufferingType
 defer:(BOOL)flag
{
 keyTable = [[NSMutableDictionary alloc] init];
 [self setInitialFirstResponder:self];
 return [super initWithContentRect:contentRect
 styleMask:aStyle
 backing:bufferingType
 defer:flag];
}
- (void)dealloc
{
 [keyTable release];
 [super dealloc];
}

Our designated initializer method creates and initializes an NSMutableDictionary object (keyTable). The
method then specifies that the CalcWindow object itself will be its own initialFirstResponder (this is necessary
so that the CalcWindow object will receive the keypresses). Finally, it forwards the initialization message to its
superclass (NSWindow) to actually do the rest of the work of initializing the CalcWindow object. This
initWithContentRect:styleMask:backing:defer: method is invoked automatically whenever an instance of

the CalcWindow class is created.[5]

The dealloc method is called when the window is destroyed. It releases the keyTable. In practice, the
CalcWindow's dealloc method may never be called, because the window is destroyed when the application
exits. We have included the dealloc method because it is good programming practice to write the code that
releases the memory that you have allocated. Otherwise, you are likely to get sloppy, and other programs that
you write will inadvertently have memory leaks in them.

Now it's time to put all this code into the CalcWindow.m file.

14. Insert the code we discussed earlier into CalcWindow.m, including the implementations of the six
new methods listed below. Note that the keyDown: and initWithContentRect:styleMask:backing:
defer: methods are overrides of NSWindow methods and so do not require declarations in
CalcWindow.h.

- initWithContentRect:styleMask:backing:defer:
- findButtons
- checkView:
- checkButton:
- checkMatrix:
- keyDown:

8.4.4 Changes in the Controller Class

The last thing we need to do to get the keyboard to work with our Calculator is to make a few changes to our
Calculator's Controller class. We need to arrange for our Controller object to invoke CalcWindow's
findButtons method when the Controller starts up and also when the radix changes.

15. Insert the lines shown here in bold into Controller.m:

#import "Controller.h"
#import "CalcWindow.h"
...

- (void)applicationDidFinishLaunching:(NSNotification*)notification
{
 radix = [[radixPopUp selectedItem] tag];
 [self clearAll:self];
 // Set up the button NSMutableDictionary
 [(CalcWindow *)[keyPad window] findButtons];
}
@end

16. Insert the lines shown here in bold at the end of the setRadix: method in Controller.m:

 // Disable the buttons that are higher than selected radix
 enumerator = [[keyPad cells] objectEnumerator];

 while (cell = [enumerator nextObject]) {
 [cell setEnabled: ([cell tag] < radix)];
 }
 [self displayX];
 // Radix changed, set up the NSMutableDictionary for a new base
 [(CalcWindow *)[keyPad window] findButtons];
}

The CalcWindow.h file needs to be imported into Controller.m, because the Controller invokes the
findButtons method. We get the id of the Calculator's window (a CalcWindow) object by sending the window
message to the keyPad that the window contains. The cast to the CalcWindow * type prevents the compiler
from issuing a warning that NSWindow does not respond to the findButtons message.

17. Save all pertinent files and build and run your Calculator application.

18. With Calculator running, enter "12345678" by typing the eight corresponding digit keys on the
keyboard. Follow that by typing the "+" key, then the "9" key, and then the "=" key. All of this should
work as expected, and you should get the result 12345687 (which is the result of 12345678 + 9).

Note that as you press a digit key on the keyboard, the corresponding on-screen button will highlight (due to
the performClick: method), and the digit will appear in the Calculator's readout text display area.

19. Now type the "c" key to clear the display.

20. Next, choose Hex mode and type "ab", followed by "-", then "d", then "=". The result should be 9e.

21. Try some more examples. What about the "0" key - does that work? How about typing uppercase letters
(e.g., "A", "B") for the hex values - do they work? How about hex "c"? This program needs some
tweaking - check out Section 8.6.

22. Quit Calculator after you have played with the keyboard a bit.

If your Calculator doesn't work correctly, make sure that you've subclassed the NSWindow and set up the
CalcWindow class definition properly.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.5 Summary

In this chapter, we took a close look at events and the responder chain and saw how they
interact with the NSWindow object. We'll periodically revisit these topics throughout the
rest of the book, looking more closely at how events interact with the NSView class.

This chapter also marks the end of the evolution of our Calculator application. We've
certainly covered a lot of ground while developing it, and it sure was fun!

In the next chapter, we'll learn more about the system software that underlies Mac OS X
and Cocoa. Then, in Chapter 10, we'll start on a new application - MathPaper - which we'll
use to learn about interprocess communication and controlling multiple main windows.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.6 Exercises

1. Modify our Calculator application by relabeling the on-screen hex buttons A-F with
the lowercase letters a-f. Also, make the "c" key on the keyboard work as the hex c
button, and the capital letter "C" work as the Clear button. Finally, fix the keyboard
input for the "0" button.

2. Try using key equivalents for all of the buttons in the Calculator instead of the
more complicated way we caught key events in this chapter. How can this be done
for hex characters?

3. Add more sophisticated mathematical functions, such as sin, cos, and log, to our
Calculator application. Use IB as a prototyping tool to redesign the Calculator
window to accommodate these new functions.

4. From scratch, develop your own new calculator program that looks and works
exactly like the bundled Calculator program in the /Applications folder.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 8. Events and Responders

8.7 References

1. Events and other input:

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/Misc/EventsPage.html

2. Foundation classes (NSMutableDictionary in particular):

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/
ObjC_classic/FoundationTOC.html

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/EventsPage.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/EventsPage.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part II: Calculator: Building a Simple Application

Chapter 9. Darwin and the Window Server

If your only previous exposure to computing is to previous versions of the Macintosh
operating system (Mac OS) or Microsoft Windows, you've probably noticed that Mac OS
X is very different indeed. If you're familiar with the "classic" Mac OS, you've probably
noticed that with Mac OS X you don't need to preallocate how much memory a program
uses, and that programs in the background run without any noticeable degradation in
performance. If you have used either Mac OS or Windows, you've surely noticed that Mac
OS X does not crash as much as these other operating systems - in fact, for most users it
doesn't crash at all! In this chapter, we'll see why Mac OS X is so different.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.1 Unix, Mach, and the Mac OS X Environment

The Mac OS X environment is built on top of the Unix operating system and the Mach
kernel. Together, they form a powerful computing infrastructure that is part of what Apple
calls Darwin. In addition to the Mach and Unix services, Darwin includes the Mac OS X
networking and (multiple integrated) filesystems.

9.1.1 Operating Systems

An operating system is the master control program that loads and runs other programs and
controls a computer's input and output systems, such as the keyboard, display, and disk
drives. Multitasking operating systems such as Mach allow more than one program to run
at the same time on the same computer; the operating system automatically arbitrates
between the various programs that are waiting to run, letting one program run for a few
milliseconds, then another, then another. Each program gets its own time slice of system
resources.

In addition to dividing the CPU resources between different programs that want to run, the
operating system divides up the computer's memory and controls access to the computer's
input and output devices. For example, the operating system makes sure that mouse events
are sent to the correct programs, even if more than one program is prepared to receive
mouse events at a given instant.

Another important function of the operating system is to prevent running programs from
interfering with each other. This is called memory protection. Without such protection, a
wayward program could affect other programs or other users, delete important files, or
even crash the entire computer system (users of Apple's Mac OS 9 and Microsoft Windows
98 are used to frequent crashes).

9.1.2 Unix

The Unix operating system was developed in the early 1970s at AT&T Bell Labs. The
creators of Unix sought to create a flexible computing environment in which they could get
useful work done by putting together a complex system from simple building blocks. They
also wanted to create a portable operating system - that is, an operating system that could
run just as easily on computers made by a variety of different vendors. (At the time,
practically every computer ran an operating system that had been written specifically for
that computer. It was extremely rare for computers from different companies - and
sometimes from the same company - to run compatible systems.)

Unix was hugely successful. In the 1970s and 1980s, it spread throughout academia and to

many research labs. But it was also a bit of an outlaw system, because no computer
companies actually sanctioned Unix to be run on their hardware. Digital Equipment
Corporation, for example, had been known to tell customers that running Unix voided the
warranty on Digital's PDP and VAX minicomputers. Instead of Unix, Digital wanted its
customers to run their proprietary RSTS, RT11, and VMS operating systems.

Things changed for Unix in the 1980s, when engineers at Sun Microsystems, Inc. and a
number of other companies took Motorola's new 68000 series of microprocessors and used
them to create a new kind of computer - the engineering workstation. Because these
companies didn't have the millions of dollars to create their own operating systems, they
decided instead to license Unix.

With the success of the workstation vendors, Unix went mainstream. Today it is the basis
of systems sold by Sun, Compaq, Hewlett-Packard, IBM, and many other firms. Unix is
also the basis for a variety of free operating systems, including Linux, FreeBSD, and
NetBSD.

9.1.3 Mach

In the 1980s, Digital funded a project at Carnegie Mellon University to develop a new
operating system for a supercomputer that Digital was creating. The group at CMU decided
to build an operating system that was designed for extraordinarily high performance: most
operations would be memory-mapped, the system was optimized for high-speed
communication between processes, and the operating system would be multithreaded so
that it could run on computers with multiple processors. When Digital canceled its
supercomputer, the CMU group decided to rename the operating system "Mach" and to
continue development. Avie Tevanian, now Apple's Senior Vice President of Software
Engineering, was one of the lead developers of the system.

The Microprocessor

Mac OS X uses a Motorola/IBM PowerPC microprocessor, or central processing
unit (CPU), to read and execute instructions and read and process data from the
computer's memory. As of this writing, Mac OS X runs exclusively on PowerPC-
based systems (G3, G4). This is actually a marketing decision, rather than a
technical decision. Very little of Mach and Mac OS X are written in the
PowerPC's native assembly language. As a result, Mac OS X can easily be
ported to other microprocessors simply by recompiling the system and rewriting
a small number of device drivers.

The original NeXTSTEP and OpenStep operating systems from which Mac OS
X and Cocoa were derived ran on several different hardware platforms.
NeXTSTEP was developed on Motorola 68030- and 68040-based
microprocessors, but NeXT ported the entire operating system to the Intel 486

and Pentium computers in the early 1990s. After that, NeXTSTEP was ported to
the Sun Microsystems SPARC and Hewlett-Packard PA-RISC architectures (and
renamed "OpenStep"). Because Mach supports a "fat binary" system, it was
possible for a NeXTSTEP developer to create an application on a 68040-based
computer and have that application run on all three other architectures (although
it was a good idea to test the application before selling it!).

In the future, it is possible that Mac OS X will once again run on other
processors.

The Mach operating system consists of a kernel and a system support environment. One
layer up from the hardware, the Mach kernel manages the computer's memory and
schedules computing time for the various programs that are ready to run.

The kernel implements virtual memory, a system that uses the computer's hard disk to
simulate a much larger block of random-access memory (RAM). Virtual memory is
transparent to running programs (although it can slow them down considerably, because
hard-disk access is thousands of times slower than RAM access). A program that needs a
10-MB block of memory simply allocates a 10-MB block of memory; the kernel
automatically shuffles data from the computer's internal memory to the hard disk and back,
as necessary. This is called swapping or paging.

The Mach kernel oversees the creation of processes, or running programs. Mach further
allows each process to create additional "lightweight" processes, called threads, which run
independently of each other but within the same program. Threads simplify writing
programs that do more than one thing at the same time.

Mach also provides a highly efficient system of interprocess communication using Mach
messages. These messages can be sent from one thread to another, between processes, or
even from one computer to another across the network.

9.1.3.1 The Mach system support environment

Sitting on top of the Mach kernel is the operating system support environment, which runs
a version of the 4.4BSD (Berkeley Software Distribution) Unix system. The Berkeley Unix
system provides Cocoa with access to hard disks and floppy disks through the Unix and
HFS filesystems, networking using either TCP/IP or AppleTalk, support for the network
filesystems, and a variety of other important features.

Mac OS X's Unix environment also contains all of the device drivers for managing the
computer's hardware devices, including the keyboard, the screen, the serial ports, and the
USB and FireWire buses. Unix is an intimate part of Cocoa, and it is therefore important to
understand how it manages users and processes. We'll discuss these in the following

sections.

9.1.3.2 Usernames and UIDs

Everyone who uses a computer running Mac OS X has a username. When you log in, your
username gets translated into a unique number called your user identifier , or UID. (If you
don't have to log into your Mac OS X computer in order to use it, your computer has been
set to "auto-login" to a particular user account. For details, look at the Login Window pane
of the System Preferences application, shown in Figure 9-1.)

Figure 9-1. Login Window pane of System Preferences - note the "lock" icon at the
bottom

Unix also uses some special system users for a variety of special purposes:

root

This user, also called the superuser, is an administrative user that performs
accounting and low-level system functions.

daemon

This user operates the computer's email system.

www

This user runs Mac OS X's built-in web server.

These users are not actually people who log in, but merely different UIDs used to run
background processes with different kinds of privileges.

Mac OS X largely insulates you from needing to know about the superuser and other user
accounts. Some control panes that allow you to make significant system changes have a
small "lock" icon at the bottom that you need to click in order to confirm that you really
wish to modify the setting. Other control panes allow you to click the lock to prevent
settings from being further modified (see Figure 9-1). Sometimes a superuser or other
password is required to "open" the lock and enable settings to be modified.

When you create multiple users on the same Cocoa computer, the Cocoa administration
utilities make sure that each user has his or her own UID. Having different UIDs prevents
users from seeing each other's private files. Normally, this administrative task is taken care
of by the Mac OS X's NetInfo (network administrative information) system.

9.1.3.3 Processes, PIDs, and UIDs

Mach is a multitasking operating system. Every task that the computer performs at any
given moment (such as the Window Server, the Finder, or the TextEdit application) has an
associated process. The process is the operating system's fundamental tool for controlling
the computer. You can generally think of the terms process and running program as
synonymous, but be careful: some applications create more than one process (as we'll see
in the next chapter). You can also run more than one copy of a single program at a time, in
which case you'll have only one program but two (or more) processes (we'll demonstrate
that in the next chapter as well).

The Mach kernel assigns every running process a unique number called the process
identifier , or PID. The first process that runs when the computer starts up is called init; this
process is given the number 1. Any process can fork, and by doing so, create a new
process. All of the processes on your computer are descendants of process number 1. Mach
process numbers can range from 1 to 32767, and the kernel guarantees that no two active
processes will ever have the same number.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.2 The Window Server and Quartz

The Mac OS X Window Server manages the screen (or screens), the keyboard, and the mouse.
Unlike the X Window Server and the NeXTSTEP Display PostScript Window Server, the Mac
OS X Window Server is lightweight - it doesn't actually do the drawing itself. Instead, its primary
role is to manage which regions of the screen each application is allowed to use, and to allow the
applications to do their own drawing. The main job of the Window Server, then, is to assure that
programs draw in their own rectangular piece of real estate on the screen, and to see to it that
events destined for one program aren't accidentally sent to another.

The Window Server frees you from having to worry about interactions between your program and
other programs that are running simultaneously. For all intents and purposes, you can design your
program as if it is the only one running.

The actual drawing on the Mac OS X screen is done with Quartz. Most Cocoa applications use
Quartz to draw to an off-screen buffer that is flushed to the screen when the drawing is finished.
This buffer is shared between the application and the Window Server using the Mach virtual
memory system, making it very fast.

The Quartz system has native support for Adobe's Portable Document Format (although Apple's
implementation of PDF doesn't actually use any of Adobe's code, for licensing reasons). As a
result, Quartz can both display and generate PDF files. Quartz can display text in any font size
and at any angle. And because it is easy to translate PDF into the commands used by most
modern printers, Quartz assures that what you see on the screen looks pretty much like what gets
printed on paper (except that the printer output looks better because of its higher resolution).

Quartz is a device-independent graphics system that handles all aspects of line drawing,
typesetting, and image presentation on the computer's screen. Device-independent means that
Quartz hides all differences in resolution from your program: to draw a line; you simply tell
Quartz to draw a line. Quartz automatically figures out which pixels on the screen (or dots on the
printed page) should be turned on or turned off.

Quartz also handles output attributes such as line width and fill color. If you want to draw a dark
gray line, you simply set the color to dark gray and draw the line. If the output device is black-
and-white only, Quartz or the PDF driver for your printer will automatically dither or halftone the
line as necessary (dithering and halftoning are techniques for showing continuous-tone images on
devices that can display only a few shades of color, or black and white only). If your output
device can handle gray tones, Quartz or the PDF driver will automatically choose values of gray
according to what you've selected.

When you're programming with color, Quartz allows you to specify color using a variety of color
models - for example, RGB, CMYK, and HSB - and then, as with black and white, converts the

color that you requested to what is appropriate to your display. This makes the color output from
Cocoa programs look as good as it possibly can on whatever display you use.

Finally, Quartz can automatically take advantage of any graphics acceleration hardware that is
present on your computer.

9.2.1 The Application Kit and the Window Server

Recall that Cocoa's Application Kit (AppKit) is a collection of Objective-C classes that define and
create objects for use by applications. Many of these AppKit objects, such as NSWindow,
NSMenu, and NSButton, have on-screen representations. In this section, we'll describe how these
objects communicate with the Window Server.

An application's NSApplication object (recall that every Cocoa application must have precisely
one of these) is responsible for communication between the AppKit objects in the application and
the Window Server. One of the main functions of the NSApplication object is to receive events
from the Window Server and distribute them to the appropriate window (or windows).

NSWindow objects manage an application's representation of windows on the screen. NSWindow
objects work together with the Window Server to handle window-moved, window-exposed, and
other window events so that on-screen windows are kept up-to-date.

The AppKit class implementations are stored in a special file called a shared library that is
contained within the AppKit bundle. The shared library is automatically linked with your program
when your program is run. This means that Apple can make improvements in the Application Kit
from release to release, and that those improvements are automatically reflected in your program
when it runs on the newer release of the operating system. No recompiling is necessary! Shared
libraries also make program images smaller, because the library isn't loaded into the program until
the program is loaded for execution.

You can find out which shared libraries an application depends on by using the otool command
in the Terminal. Enter the following commands, shown here in bold, to find out which shared
libraries Mac OS X's Clock.app application uses:

% cd /Applications/Clock.app/
% otool -L Contents/MacOS/Clock
Contents/MacOS/Clock:
 /System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
 (compatibility version 45.0.0, current version 617.0.0)
 /System/Library/Frameworks/Foundation.framework/Versions/C/
 Foundation (compatibility version 300.0.0, current
 version 423.0.0)
 /System/Library/PrivateFrameworks/HIServices.framework/Versions
 /A/HIServices (compatibility version 1.0.0, current
 version 64.0.0)

 /System/Library/Frameworks/ApplicationServices.framework/
 Versions/A/ApplicationServices (compatibility version
 1.0.0, current version 16.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0,
 current version 55.0.0)
%

Note that Clock.app uses the AppKit and Foundation class libraries, together with three others.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.3 Seeing All the Processes

To see all of the processes running on your Mac OS X computer, we can use the ProcessViewer application we
introduced in Chapter 2. Figure 9-2 contains a screen shot of ProcessViewer displaying the user processes at a
given time, whereas Figure 9-3 shows the administrator (or root) processes. Figure 9-2 contains additional process
ID information at the bottom of the window.

Figure 9-2. User processes with process ID information

Figure 9-3. Administrator (root) processes

We can also use the ps command in a Terminal (Unix) window to see all of the running processes. The ps
command has many options, but using the options a, u, and x gives us a user-readable listing of all the currently
running processes. (ProcessViewer's output is nicer, but it contains less information than the ps command's output.)

Enter ps auxww in a Terminal window (the suffix ww is for wide format). Your listing should contain many of the
same programs as the following listing (the processes in our ps listing differ from those in our ProcessViewer
listing). Some of the processes running on your computer are bound to differ; it depends on which programs you are
running and how your system is configured. wsurfer is the username of the user who logged in, and we've
formatted the shell output a bit to make it easier to read.

% ps auxww
USER PID %CPU %MEM VSZ RSS TT STAT TIME COMMAND
wsurfer 615 4.2 5.1 38040 13248 ?? Ss 0:01.24
 /System/Library/CoreServices/WindowServer console
wsurfer 63 0.4 0.6 9400 1664 ?? Ss 0:03.35
 /System/Library/Frameworks/ApplicationServices.framework/Versions/A/
 Frameworks/ATS.framework/Versions/A/Support/ATSServer
root 41 0.0 0.6 3372 1480 ?? Ss 0:00.00 kextd
root 67 0.0 0.0 1276 96 ?? Ss 0:01.85 update
root 70 0.0 0.0 1296 108 ?? Ss 0:00.00 dynamic_pager

 -H 40000000 -L 160000000 -S 80000000 -F /private/var/vm/swapfile
root 93 0.0 0.1 2332 372 ?? Ss 0:00.38
 /sbin/autodiskmount -va
root 116 0.0 0.6 3820 1496 ?? Ss 0:00.93 configd
root 151 0.0 0.1 1288 156 ?? Ss 0:00.11 syslogd
root 157 0.0 0.0 1604 120 ?? Ss 0:00.00
 /usr/libexec/CrashReporter
root 179 0.0 0.1 1580 368 ?? Ss 0:00.23 netinfod -s local
root 186 0.0 0.2 2448 488 ?? Ss 0:01.32 lookupd
root 196 0.0 0.1 1528 300 ?? S<s 0:01.99 ntpd -f
 /var/run/ntp.drift -p /var/run/ntpd.pid
root 205 0.0 0.6 8968 1476 ?? S 0:03.54 AppleFileServer
root 209 0.0 0.4 2872 1060 ?? Ss 0:00.85
 /System/Library/CoreServices/coreservicesd
root 216 0.0 0.0 1288 116 ?? Ss 0:00.00 inetd
root 226 0.0 0.0 1276 84 ?? S 0:00.00 nfsiod -n 4
root 227 0.0 0.0 1276 84 ?? S 0:00.00 nfsiod -n 4
root 228 0.0 0.0 1276 84 ?? S 0:00.00 nfsiod -n 4
root 229 0.0 0.0 1276 84 ?? S 0:00.00 nfsiod -n 4
root 236 0.0 0.1 2192 320 ?? Ss 0:00.00 automount
 -m /Network/Servers -fstab -m /automount -static
root 239 0.0 0.4 3684 1068 ?? S 0:00.20 DirectoryService
root 249 0.0 0.3 2136 656 ?? Ss 0:00.23
 /System/Library/CoreServices/SecurityServer
root 255 0.0 0.1 1536 224 ?? Ss 0:00.42 /usr/sbin/sshd
root 260 0.0 0.1 1560 152 ?? Ss 0:00.07 cron
root 267 0.0 0.2 5108 528 ?? Ss 0:03.20 slpd -f
 /etc/slpsa.conf
wsurfer 616 0.0 1.7 46392 4464 ?? Ss 0:01.65
 /System/Library/CoreServices/loginwindow.app/loginwindow console
wsurfer 623 0.0 0.6 18624 1612 ?? Ss 0:00.93
 /System/Library/CoreServices/pbs
wsurfer 624 0.0 5.7 75876 14816 ?? S 0:02.45
 /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder -psn_0_262145
wsurfer 628 0.0 1.3 53288 3292 ?? S 0:00.54
 /System/Library/CoreServices/Dock.app/Contents/MacOS/Dock -psn_0_393217
wsurfer 629 0.0 1.0 56400 2748 ?? S 0:00.46
 /System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/
 SystemUIServer -psn_0_524289
wsurfer 630 0.0 1.1 59632 2960 ?? S 0:00.60
 /Applications/Clock.app/Contents/MacOS/Clock -psn_0_655361
wsurfer 631 0.0 0.5 39072 1324 ?? S 0:00.13
 /Applications/iTunes.app/Contents/Resources/iTunesHelper.app/Contents/
 MacOS/iTunesHelper -psn_0_786433
wsurfer 632 0.0 2.0 62820 5168 ?? S 0:01.37
 /Applications/Utilities/Terminal.app/Contents/MacOS/Terminal -psn_0_917505
wsurfer 633 0.0 0.4 5876 940 std Ss 0:00.15 -tcsh (tcsh)
root 572 0.0 0.0 0 0 con- Z 0:00.00 (AEServer)
root 638 0.0 0.1 1324 288 std R+ 0:00.01 ps auxww
root 1 0.0 0.1 1292 248 ?? SLs 0:00.01 /sbin/init
root 2 0.0 0.1 1300 144 ?? SL 0:01.31 /sbin/mach_init
%

Table 9-1 contains descriptions of the meanings of the different fields in the ps listing.

Table 9-1. Fields in the ps command output

Field Meaning

USER
Username of the user who owns the process; usually root, for processes run by the system, or your
username.

PID Process identifier of each process.

%CPU Percentage of CPU time the process is using.

%MEM Percentage of physical memory the process is using.

VSZ Amount of virtual memory the process is using.

RSS Amount of process resident in physical memory.

TT
Terminal being used by the process; a "??" means that the process is not associated with any
terminal. Programs that are run from the Mac OS X Terminal application are usually associated with
a terminal, whereas GUI programs are not.

STAT
Status of the process: R is running, S is stopped, W is waiting, N is "niced" (running with reduced
priority).

TIME Length of time the process has been running.

COMMAND Command that ran the program that started the process.

You can look up the ps command by typing man ps in a Terminal window to learn further details concerning this
command's output.

Most of the processes displayed in the ps auxww listing above have an important function. Table 9-2 lists what
each one does.

Table 9-2. Description of the processes in our ps listing

Process Function

slpd -f /etc/slpsa.conf This command is not documented.

/sbin/mach_init mach_init is the master Unix process that starts all other processes.

kextd This command is not documented.

ATSServer
Although this command is not documented, we believe that it is the Adobe
Type Server.

update Flushes internal filesystem caches to the disk every 30 seconds.

dynamic_pager System memory paging daemon.

autodiskmount Disk automounter.

configd System Configuration Server.

syslogd System logging daemon.

CrashReporter Reports crashes.

netinfod NetInfo Daemon.

lookupd Lookup daemon, which makes NetInfo run faster.

ntpd
Network Time Protocol daemon, which keeps the computer's clock
synchronized with the time servers.

AppleFileServer File server for AppleShare.

coreservicesd Core services daemon.

inetd Internet daemon, which starts a variety of Internet daemons.

nfsiod
NFS IO daemon, which provides a write-back cache for the Network File
Service.

DirectoryService Provides directory services.

automount
Auto NFS mounter, which automatically mounts NFS filesystems when
requested.

pbs Pasteboard Server.

SecurityServer Core Services Security Server.

sshd SSH server.

cron
Program that automatically runs programs listed in the file /usr/lib/
crontab at predetermined times.

WindowServer Mac OS X Window Server.

loginwindow Process that runs the login window.

pbs
Mac OS X Pasteboard server, which coordinates sharing of data on the
various pasteboards.

Finder Mac OS X Finder.

Dock Mac OS X Dock.

SystemUIServer Provides command bar icon menus.

Terminal Terminal application.

CPU Monitor CPU monitor.

ps auxww ps program, which generated this listing.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.4 Summary

This chapter may not have been as much fun as the previous ones, because we didn't show
you any cool Interface Builder techniques, any nicely integrated features of Project
Builder, or even any powerful AppKit classes. However, we did learn a bit about the
Darwin working internals of Mac OS X, things that every serious Cocoa programmer
should know. There's a lot more to learn about Darwin, but we've learned enough to go on
to our next (more sophisticated) example, MathPaper, in the next chapter.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.5 Exercises

1. Run the ps aux command in a Terminal window. Attempt to explain every
process that you see listed.

2. Is it possible for your computer to run out of processes? If you think the answer is
no, explain why. If you think the answer is yes, devise an experiment to make your
computer run out of processes, try it out, and explain what happens. Is there any
way to recover from this situation other than rebooting your computer?

3. Explain the difference between a process and a thread.

4. Run the Quartz Debug program in the /Developer/Applications folder.
Select "flash screen updates." Explain how different kinds of programs (Carbon,
Cocoa, Swing) use threads differently. Can you explain the different threads
running in each of your applications?

5. Type man vmstat in a Terminal window to review the documentation for the
vmstat command. Explain what this program does, in your own words. Explain
the output of the commands vmstat -i, vmstat -m, vmstat -s, and vmstat
-z.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 9. Darwin and the Window Server

9.6 References

1. Darwin:

http://developer.apple.com/darwin/

2. ps command:

3. Type man ps in a Terminal window to see the full command documentation.

http://developer.apple.com/darwin/

Book: Building Cocoa Applications: A Step-by-Step Guide

Part III: MathPaper: A Multiple-Document,
Multiprocess Application

Part III, Chapter 10 through Chapter 15, focuses on building a new
application called MathPaper. MathPaper is similar to a word processor in
that it supports multiple windows, but it behaves very differently. Users can
enter mathematical expressions in a MathPaper window, and the application
will solve the expressions that were typed. The application uses a back-end
mathematical processor called Evaluator to do the mathematical
calculations. Chapter 15 leaves MathPaper, but it includes several small
examples that demonstrate drawing in NSView objects.

● Chapter 10
● Chapter 11
● Chapter 12
● Chapter 13
● Chapter 14
● Chapter 15

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 10. MathPaper and Cocoa'sDocument-Based
Architecture

In this chapter and in Chapter 11 through Chapter 14, we are going to start over and build a
new, more sophisticated calculator-like application called MathPaper. MathPaper will
manage multiple windows, use fonts to convey information, and use interprocess
communication to make a request to another (back end) program to do the actual
calculation. In writing MathPaper, we will learn a lot more about Cocoa's architecture for
creating applications that handle documents in multiple windows.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.1 The MathPaper Application

When we're done, MathPaper will be a scratchpad mathematics application that looks like a
text editor: it will display a little text window into which you can type mathematical
expressions. The neat thing about MathPaper is that when you hit the Return key, the
application will automatically calculate the value of the mathematical expression that
you've typed and display the result. Figure 10-1 contains an example of MathPaper running
with three windows open.

Figure 10-1. MathPaper window with mathematical expressions and results

MathPaper can handle multiple windows: typing Command-N will give you another
"piece" of "math paper." In later chapters of this book, we'll use part of MathPaper to graph
equations as well. MathPaper has four main parts:

Document-based architecture

Cocoa's powerful document-based architecture manages the application's windows
and some of the menus, and it handles files that need to be opened, saved, printed,
and so on. The principal AppKit classes in this architecture are
NSDocumentController, NSDocument, and NSWindowController.

MathDocument

MathDocument is a subclass of the NSDocument class that manages the actual
opening and saving of MathPaper document files. There is a separate
MathDocument object for each piece of math paper (i.e., one for each window like
the ones shown in Figure 10-1).

PaperController

PaperController is a subclass of the NSWindowController class that asks for the
mathematical calculations to be performed and displays the results. As with
MathDocument, there is a separate PaperController object for each piece of math
paper.

Evaluator

Evaluator is a separate program that can evaluate arbitrary algebraic expressions. It
communicates with a PaperController object using an NSTask object and two
NSPipe objects. Evaluator is the back end (computational) part of our MathPaper
application.

The Cocoa document-based architecture is part of the Application Kit framework. The
document architecture manages many aspects of an application that can open multiple
documents at a time, including the File Open, Save, Save As, Save To, and Close
menu options. To use this architecture, you create subclasses of the NSDocument class
(and optionally the NSWindowController class). The classes contain the common
functionality for managing windows; your subclasses contain the application-specific
routines.

In addition to handling multiple windows, MathPaper handles multiple processes: each
piece of math paper is attached to its own copy of the Evaluator program, which performs
calculations solely for that window. Together, the MathDocument and PaperController
classes comprise the MathPaper application's front end, while the Evaluator makes up the
application's back end. This technique of having separate front and back ends is a common
approach used by many applications. It is also a common technique for structuring web
sites. One of the advantages of this technique is that it lets you subdivide your
programming efforts, concentrating on the math-solving or database part of the program in
the back end and the user-interface part of the program in the front end. Another advantage
is that the equation-solving back end can be used by more than one application, as long as

its interface is well documented. If you are careful with your design, you can also create a
portable back end that will be easy to move from one operating system to another.

In this chapter, we'll build two of the three major modules of MathPaper: the Evaluator
back end, which we'll test in a Terminal (Unix) window, and the front-end interface, which
we'll test on the desktop. In Chapter 11, we'll hook these two modules together with the
third major module in our application, a controller. The controller will use an object of type
NSTask to manage the Evaluator (Unix) subprocesses. In Chapter 12, we'll improve our
MathPaper output using our own Rich Text Format (RTF) class. Then, in Chapter 13, we'll
arrange for each piece of math paper to save its data into a file and then read the data back
from the file when the data-file icon is opened.

The big picture of the MathPaper application, with three open math paper windows (as in
Figure 10-1), is shown in Figure 10-2. It indicates that the MathPaper application creates
three MathDocument objects and three PaperController objects, one for each window. Each
PaperController object creates its own NSTask object to manage a copy of the Evaluator
back end.

Figure 10-2. The big picture of the MathPaper application

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.2 The Evaluator Back End

The MathPaper back end, which we'll call Evaluator, is a program that reads a stream of mathematical
expressions and displays the result of evaluating them. If you give the back end the following input, line by
line:

1+2*3+4
2+5*sin(3)
9/4
3+
(8-76+32) / 3.2

it will return this output:

11
2.7056
2.25
Syntax Error
-11.25

The Evaluator will write its output directly to standard output, and we'll demonstrate it in a Terminal window.
Later, when we run the Evaluator as a subprocess from MathPaper, the Evaluator's standard output will be
returned to the MathPaper application, which will, in turn, display the contents in an on-screen window.

In the rest of this section and the next section, we'll discuss how to build the Evaluator back end. These sections
use hardcore Unix development tools that are not essential to understanding Cocoa programming, and you can
skip them if you want to download the source code from our web site (http://www.oreilly.com/catalog/
buildcocoa/). You can also download a working copy of the Evaluator program from our web site. However, we
recommend that you follow the steps in the next section, even if you don't fully understand what's going on. All
you really have to know to continue with MathPaper is that the Evaluator will perform the actual calculations
for MathPaper and that it will run as a separate Unix process. So, if you plan to just download the source files,
you can skip ahead to Section 10.4.

The task of the Evaluator back end breaks down into two parts: lexical analysis and parsing. Lexical analysis
involves reading the input stream and determining which characters correspond to numbers and which
correspond to operations. The character stream is then turned into a stream of tokens, or symbols. For example,
the input to Evaluator shown earlier would generate the following token stream:

<1> <+> <2> <*> <3> <+> <4> <newline>
<2> <+> <5> <*> <sin> <(> <3> <)> <newline>
<9> </> <4> <newline>
<3> <+> <newline>
<(> <8> <-> <76> <+> <32> <)> </> <3.2> <newline>

The second part of the back end is the parser, which reads the token stream generated by the lexical analyzer,
performs the requested calculations, and prints the correct result.

Parsers and lexical analyzers are not trivial programs to write. Fortunately, Mac OS X comes with two

http://www.oreilly.com/catalog/buildcocoa/
http://www.oreilly.com/catalog/buildcocoa/

programs for constructing lexical analyzers and parsers from (relatively) simple input files. These program-
generating programs are called lex and yacc. You don't need to understand how lex and yacc work in
order to understand the MathPaper program. The only thing that really matters is that, using lex and yacc, we
are able to build a relatively powerful and reliable back end with only a small amount of work.

The Evaluator application is compiled from three input files:

Makefile

Input for make, the Unix utility that maintains, updates, and regenerates programs; tells make how to

compile and link the Evaluator program[1]

grammar.y

Input to the yacc program

rules.l

Input to the lex program

10.2.1 lex and yacc

lex and yacc are programs that generate other programs. A full description of their use is beyond the scope of
this book. For further information in Mac OS X, type man lex in a Terminal window. Also see the book lex &
yacc, by John Levine, Tony Mason, and Doug Brown (O'Reilly).

yacc reads an input grammar file (in our case, the file grammar.y) that describes a particular grammar and
generates two C source code files: y.tab.h and y.tab.c. lex reads the include file y.tab.h and a
second file (in our case, the file rules.l) that describes a set of lexical rules and generates a C source file
called lex.yy.c. The source code in y.tab.c and lex.yy.c is then compiled with the cc compiler and
linked to form the Evaluator program.

We get a lot of power by using lex and yacc. Not only do we get a full-featured mathematical evaluator that
properly interprets parentheses and order of evaluation (for example, evaluating multiplication before addition),
but we also get a system to which it is easy to add new formulas and rules. For example, adding a new function
to the Evaluator simply requires adding two new lines, one to the set of rules and one to the grammar. We'll be
doing much of our work from the Terminal command line, so make sure your Dock contains Mac OS X's
Terminal application.

10.2.2 Building the Back End

1. Create a new folder called Evaluator in your Home folder.

2. Using an editor (TextEdit, GNU Emacs, or vi), create a file called Makefile in your Evaluator
directory containing the following:

CFLAGS = -O
SRCS = y.tab.c lex.yy.c
LFLAGS = -ly -ll -lm
Evaluator: $(SRCS)

 cc $(CFLAGS) -o Evaluator $(SRCS) $(LFLAGS)

clean:
 /bin/rm -f Evaluator $(SRCS) *.h

lex.yy.c: rules.l y.tab.h
 lex rules.l

y.tab.h: grammar.y
 yacc -d grammar.y

y.tab.c: grammar.y
 yacc grammar.y

It is very important that you begin the indented lines with a tab character, and not
with spaces! The Unix make system distinguishes between these two types of
whitespace.

This Makefile contains the targets install, clean, etc.

3. Using an editor, create a file called grammar.y in your Evaluator directory containing the
following:

%{
#include <libc.h>
#include <math.h>

int printingError = 0;
%}

%start list

%union
{
 int ival;
 double dval;
}

%token <dval> NUMBER
%token <dval> SIN COS TAN ASIN ACOS ATAN
%token <dval> SINH COSH TANH ASINH ACOSH ATANH
%token <dval> SQRT MOD LN LOG PI
%type <dval> expr number

%left '+' '-'
%left '*' '/'
%left SIN COS TAN ASIN ACOS ATAN SINH COSH TANH ASINH
%left ACOSH ATANH
%left '^' SQRT MOD LN LOG
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : stat
 | list stat
 ;

stat : expr '\n'
{
 printf("%10g\n",$1);
 printingError = 0;
 fflush(stdout);
}
;

expr : '(' expr ')'
{
 $$ = $2;
}
 | expr '+' expr { $$ = $1 + $3;}
 | expr '-' expr { $$ = $1 - $3;}
 | expr '*' expr { $$ = $1 * $3;}
 | expr '/' expr { $$ = $1 / $3;}
 | SIN expr { $$ = sin($2);}
 | COS expr { $$ = cos($2);}
 | TAN expr { $$ = tan($2);}
 | ASIN expr { $$ = asin($2);}
 | ACOS expr { $$ = acos($2);}
 | ATAN expr { $$ = atan($2);}
 | SINH expr { $$ = sinh($2);}
 | COSH expr { $$ = cosh($2);}
 | TANH expr { $$ = tanh($2);}
 | ASINH expr { $$ = asinh($2);}
 | ACOSH expr { $$ = acosh($2);}
 | ATANH expr { $$ = atanh($2);}
 | expr '^' expr { $$ = pow($1,$3);}
 | expr MOD expr { $$ = fmod($1,$3);}
 | LN expr { $$ = log($2);}
 | LOG expr { $$ = log10($2);}
 | SQRT expr { $$ = sqrt($2);}
 | '-' expr %prec UMINUS
 {
 $$ = -$2;
 }
 | number
 ;

number : NUMBER /* lex number */
 | PI { $$ = M_PI; }
 ;

%% /* beginning of functions section */
void yyerror(char *s)
{
 if (printingError == 0) {

 printf("Syntax Error\n");
 fflush(stdout);
 printingError = 1;
 }
}

int main(int argc,char **argv)
{
 while (!feof(stdin)) {
 yyparse();
 }
 exit(0);
}

4. Using an editor, create a file called rules.l[2] in your Evaluator directory containing the
following:

%{
#include "y.tab.h"
#include <stdlib.h>

#define YY_INPUT(buf,result,max_size) (buf[0])=getchar();result=1;

int yywrap(void);
int yywrap(){return 0;}

%}

%%

"\n" return('\n');

[0-9]*("."[0-9]*("e"[-+][0-9]+)?)? {yylval.dval = atof(yytext);
 return(NUMBER);}

sin return(SIN); // NOTE: In this section, be sure to use
cos return(COS); // a tab after the 'sin' and each of
tan return(TAN); // the other function names. If you use
asin return(ASIN); // spaces, this code will not compile
acos return(ACOS); // properly.
atan return(ATAN);
sinh return(SINH);
cosh return(COSH);
tanh return(TANH);
asinh return(ASINH);
acosh return(ACOSH);
atanh return(ATANH);
mod return(MOD);
ln return(LN);
log return(LOG);
sqrt return(SQRT);
pi return(PI);

[\t] ;

. {return(yytext[0]);}

%%

Unlike most lex and yacc programs, Evaluator contains all of the auxiliary C code that it needs to run in the
grammar.y file. yacc automatically passes this code along to the C compiler with the parser that it
generates.

5. Open up a Unix shell window in the Terminal application.

6. Compile the Evaluator program with the make utility by typing make in the Terminal window. What
you should type is shown here in bold:

% cd ~/Evaluator
% make
yacc grammar.y
yacc -d grammar.y
lex rules.l
cc -O -o Evaluator y.tab.c lex.yy.c -ly -ll -lm
%

If you get any errors, you probably made a typo.

7. After compiling the program, test it with a few mathematical expressions, as follows:

% cd ~/Evaluator
% ./Evaluator
10+20
 30
2002/2001
 1.0005
sin(2*pi) + cos(4*pi)
 1
^C%>

(Type Control-C to exit the program. The "^C", which indicates where you should type Control-C, will show up
in the Terminal window where indicated.)

Congratulations - you're finished with the back end! If you don't understand it all, don't worry. All you have to
know to continue with MathPaper is that Evaluator will perform the actual calculations for MathPaper and will
run as a separate process.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.3 Cocoa's Document-Based Architecture

MathPaper uses Cocoa's document-based architecture, which relies on three classes -
NSDocument, NSDocumentController, and NSWindowController - for managing its
windows. Part of the Application Kit, the document-based architecture includes much of
the functionality needed to create an application that can manage multiple windows, each
containing its own document.

Working with the rest of the AppKit, the document-based architecture system provides for
the following functionality, most of which is available via an application's File (or
Document) menu:

● Creating new documents (File New)
● Opening existing documents from files (File Open)
● Saving files, either to the names from which they were opened or to new names

(File Save, File Save As, File Save Copy As)
● Reverting documents to the way that they are stored on the disk (File Revert

to Saved)
● Closing currently open files, first prompting to save the files if necessary (File

Close)
● Printing documents and modifying the current page layouts (File Print and

File Page Setup)
● Automatically handling the window's modified status and title bar, and the

application's Window menu

All of these tasks are handled for us automatically by Cocoa's document-based architecture
system.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.4 Building MathPaper's Front End

The next step is to create MathPaper's front end - the user interface and the program module that starts up the
Evaluator subprocesses and sends them mathematical expressions to evaluate.

The MathPaper program will consist of two nibs:

MainMenu.nib

The main nib that will control the menu, application initialization, and launching of new windows.

PaperWindow.nib

The nib that will control a single MathPaper window. If we have several MathPaper windows, one copy of
PaperWindow.nib will be loaded for each window.

Because every MathPaper window has a separate nib, we can create new instances of a window simply by
loading the same nib multiple times. We'll see how this works later in this chapter.

10.4.1 Setting Up the MathPaper Project

1. Launch Project Builder and choose its File New Project menu command.

2. Select "Cocoa Document-based Application" in the New Project Assistant, as shown in Figure 10-3, and
then click the Next button.

Figure 10-3. Creating a new Cocoa document-based application in PB

3. Give your new project the name "MathPaper" and click the Finish button.

Project Builder will create a folder called MathPaper in your Home folder and will populate it with files and
folders, as shown in Figure 10-4.

Figure 10-4. Files and folders created by PB for a new document-based application

These files and folders are important for our MathPaper application; they are summarized in Table 10-1.

Table 10-1. Files and folders created by PB for MathPaper

Filename Purpose

build Folder for program builds

English.lproj Project folder for English-language nibs

English.lproj/Credits.rtf Information for default About panel

English.lproj/InfoPlist.strings Initial localized property list for the project

English.lproj/MainMenu.nib Main menu nib for the application

English.lproj/MyDocument.nib Initial window/document nib

main.m Contains Objective-C main() function

MathPaper.pbproj MathPaper PB project file

MyDocument.h Initial interface file for MyDocument class

MyDocument.m Initial implementation file for MyDocument class

Project Builder automatically created the two folders and eight files listed in Table 10-1 for us when we used this
tool to create a new Cocoa document-based application. In the next step, we'll see how much functionality we
already have.

4. In PB, run your MathPaper application by clicking the build and run button.

A "generic" MathPaper should now be running, with one document window that displays the text "Your document
contents here".

5. Choose MathPaper's File New menu command twice, and you should see two additional document
windows, as shown in Figure 10-5.

Figure 10-5. MathPaper with three documents

6. Try some of the other menu commands, such as File Close and Window Minimize.

Note that several of these menu items already work and were therefore pre-connected for us as soon as we chose to
create a new Cocoa document-based application. This built-in functionality saves Cocoa programmers a lot of
work!

7. Choose MathPaper Quit.

10.4.2 Changing the Names of MathPaper Project Files

Rather than accepting the default names provided by PB, we will change the name of the nib from "MyDocument.
nib" to "PaperWindow.nib". We'll also change the name of the class from "MyDocument" to "MathDocument". If
we don't do this, we'll be stuck with the same (MyDocument) generic names that you see for most Cocoa document-
based applications. The name-changing will take a bit of effort, but not too much.

8. Open the Finder and browse to your ~/MathPaper/English.lproj folder, as shown in Figure 10-4.

9. Change the name "MyDocument.nib" to "PaperWindow.nib" in the Finder (single-click the filename and
type the new name).

10. Next, change the name of the interface file in ~/MathPaper from "MyDocument.h" to "MathDocument.
h" in the Finder.

11. Also change the name of the implementation file in ~/MathPaper from "MyDocument.m"to
"MathDocument.m" in the Finder.

Now we need to tell PB not to use the old nib and class filenames:

12. Back in PB, make sure that the Groups & Files pane is visible in PB's main window.

13. Open the Classes group in the Groups & Files pane by clicking the disclosure triangle next to Classes. The
two (former) class files, MyDocument.h and MyDocument.m, should both be displayed in red because
the files no longer exist in the ~/MathPaper folder.

14. Delete both MyDocument references by selecting each filename with your mouse and then pressing the
Delete key on your keyboard.

15. Open the Resources group in the Groups & Files pane. The filenames Credits.rtf, MainMenu.nib,
MyDocument.nib, and InfoPList.strings should appear.

16. Click the disclosure triangle to the left of MyDocument.nib to see "English", which is also colored red
because the nib name has been changed.

17. Select the red-colored "English" and press the Delete key on your keyboard. PB may prompt you with a
drop-down sheet that contains "Remove: Some items are represented on disk. Also delete from disk?" If you
see this sheet, click the Don't Delete button.

Next, we need to inform PB about the new names we gave to the files in the Finder:

18. Choose PB's Project Add Files menu command to add the renamed files to the MathPaper project.

19. In the resulting sheet, click the MathDocument.h file and then Shift-click the MathDocument.m file.

20. Click the Open button in the drop-down sheet, and you'll see another drop-down sheet with a checkbox item
asking if you want to "Copy items into destination group's folder".

21. Because the MathDocument class files are already in the ~/MathPaper folder, simply click Add.

22. If the MathDocument files are not inserted into the Classes group in PB, drag them into it (drop the files
after the disclusure triangle changes to whatever your highlight color is).

23. Again choose the Project Add Files menu command. This time, add the PaperWindow.nib file that
is inside the English.lproj folder and make sure it's in the Resources group in the Groups & Files
pane.

When you are finished, the Groups & Files pane in your MathPaper project window should look like the one in
Figure 10-6.

Figure 10-6. Files added in MathPaper Groups & Files pane

Finally, let's change the name representing the MathDocument class in Interface Builder:

24. Double-click the PaperWindow.nib filename in PB's Groups & Files pane to open the file in IB.

25. Select "MyDocument" under the Classes tab in the PaperWindow.nib window (use the Search field in
this window to find the class quickly; it's a subclass of NSDocument).

26. Change the name of this class from "MyDocument" to "MathDocument".

10.4.3 The MathDocument Class

In this section, we will set up the MathDocument class as a subclass of the NSDocument class.

27. Open the file MathDocument.h in PB by double-clicking its name in the Groups & Files pane. You will
see the following source code:

// MyDocument.h

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument
{
}
@end

28. Replace the comment and @interface statements in MathDocument.h with the statements shown
here in bold:

// MathDocument.h

#import <Cocoa/Cocoa.h>
@interface MathDocument : NSDocument
{
}
@end

29. Save MathDocument.h.

30. Open the file MathDocument.m in PB. You'll see the following source code:[3]

// MyDocument.m

#import "MyDocument.h"

@implementation MyDocument

- (NSString *)windowNibName
{
 // Override returning the nib filename of the document.
 // If you need to use a subclass of NSWindowController or if
 // your document supports multiple NSWindowControllers,
 // you should remove this method and override
 // -makeWindowControllers instead.
 return @"MyDocument";
}

- (void)windowControllerDidLoadNib:(NSWindowController *) aController
{
 [super windowControllerDidLoadNib:aController];

 // Add any code here that needs to be executed once the
 // WindowController has loaded the document's window
}

- (NSData *)dataRepresentationOfType:(NSString *)aType
{
 // Insert code here to write your document from the given data.
 // You can also choose to override
 // -fileWrapperRepresentationOfType: or
 // -writeToFile:ofType: instead.
 return nil;
}

- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType
{
 // Insert code here to read your document from the given data.
 // You can also choose to override
 // -loadFileWrapperRepresentation:ofType: or
 // -readFromFile:ofType: instead.
 return YES;
}

@end

31. Replace the first three lines of MathDocument.m with the statements shown here in bold:

// MathDocument.m

#import "MathDocument.h"

@implementation MathDocument

32. Replace the return value in the windowNibName method as follows:

- (NSString *)windowNibName
{
 return @"PaperWindow";
 // The comments have been removed
}

All of the changes we made in the last several pages are necessary because we want our own names (not the default
ones), to better describe our nib and class files (perhaps there's an easier way to do this, but we don't know it). In
making these changes, we've also gotten a look at some of the code that is automatically generated for a Cocoa
document-based architecture application.

10.4.4 The MainMenu.nib File

In this section, we will customize the MathPaper menus that are stored in the MainMenu.nib file:

33. Back in PB, double-click the MainMenu.nib filename (under Resources) in PB's Groups & Files pane. IB
will automatically launch and display the MainMenu.nib interface created by PB.

34. Choose Interface Builder Hide Others to simplify the screen.

35. Select IB's Cocoa-Menus palette by clicking the icon at the left of the Palettes window toolbar.

The Cocoa-Menus palette is shown in Figure 10-7. Many of the menu cells in IB's Cocoa-Menus palette are
preconnected (we saw such a preconnection previously with Calculator's Edit Cut menu item, which was
connected to the First Responder object's cut: method). We'll soon see how the File menu commands are
preconnected. Also, be careful to include the desired functionality when changing names of menus and items. For
example, if you drag the Window submenu into your application and then run it, the NSApplication object will
automatically update the Window submenu as you create and delete main windows within your application. (Isn't
object-oriented programming wonderful?!) You won't get this behavior, though, if you simply drag out the submenu
called Submenu and change its name to Window.

Figure 10-7. Cocoa-Menus palette in IB

In Mac OS X Version 10.1, some of the menus in the Cocoa-Menus palette differ slightly from the menus that are
included in the default MainMenu.nib menu. For example, the Edit menu in the palette contains a Speech menu
item, while MainMenu.nib's Edit menu does not. This and other minor variations appear to be oversights and
may be changed in a future release.

You can cut and paste menus and submenus with IB's Edit Cut and Edit Paste commands (what a
concept!). If you want a particular submenu (like the extended Edit submenu) but you don't want a particular
submenu command (e.g., Edit Paste As), simply select the menu command and cut it out of the submenu.
(You can also delete entire menus by hitting the Delete key when a menu cell is highlighted, so be careful!)

Of course, each application program that you create is likely to have its own specific collection of menus. Typically,
you will initially customize the menus in MainMenu.nib when you first create your application. Then, as your
application grows, you will modify the menus.

36. Back in IB, double-click "NewApplication" in the main MainMenu.nib menu and change its name to
"MathPaper".

37. Change the other three occurrences of "NewApplication" in the MathPaper menu to "MathPaper", as shown
in Figure 10-8.

Figure 10-8. Configuring MathPaper's main menu

38. One by one, select and cut both the Preferences menu item and the space below it (we will not be creating a
Preferences panel for this application). Your MathPaper application menu should now look exactly like the
one in Figure 10-8.

Note that the Services submenu in Figure 10-8 is empty - it will be filled in automatically when your program runs
(another free and tremendously powerful feature of Cocoa). Cocoa applications use the Services submenu to send
messages to other applications.

39. Rename the Help submenu item so that "MyApp Help" becomes "MathPaper Help", as shown in Figure 10-
8.

40. In the MainMenu.nib window, choose File New.

41. Type Command-2 to bring up the NSMenuItem Connections Info dialog.

42. Single-click the newDocument: method with the dimple next to it to display a premade connection to the
First Responder (make sure you don't double-click the method and break the connection!).

Your screen should now contain something like the screen shot in Figure 10-9. (The only reason we included the
previous three steps was to show you a MathPaper preconnection - these steps do not change anything in the
MathPaper program.)

Figure 10-9. Premade connection from File New to First Responder

The File menu (see Figure 10-9) has commands for dealing with documents as a whole - creating new documents,
saving them, and so on. The Cocoa document-based architecture provides methods for each of the menu items in
the File menu, as indicated in Table 10-2.

Table 10-2. File menu items and their premade action messages

File menu item Action message

File New [FirstResponder newDocument:]

File Open . . . [FirstResponder openDocument:]

File Open Recent Clear Menu [FirstResponder clearRecentDocuments:]

File Close [FirstResponder performClose:]

File Save [FirstResponder saveDocument:]

File Save As . . . [FirstResponder saveDocumentAs:]

File Revert [FirstResponder revertDocumentToSaved:]

File Page Setup . . . [FirstResponder runPageLayout:]

File Print . . . [FirstResponder print:]

The First Responder will typically be the object that controls the document in the key window and thus will change
as the end user changes the key window. Messages that are not handled by the key window will be passed up the
responder chain; for example, the File New command will be handled by the NSDocumentController object.
The Window submenu will automatically be modified when your program is running to include additional menu
cells for each document window (but not panel) that your program creates: this is done for you by the
NSApplication object.

MainMenu.nib is now set up, so let's move on to customizing details about our project.

10.4.5 Customizing the Document-Based Project Information in PB

We must tell PB about the kinds of documents that Cocoa's document-based architecture will support. We will enter
the information in the Application Settings pane under PB's Targets tab, as you'll see shortly.

For each document type, PB needs to know:

● The name of the document type
● Whether your application can edit files of this type, or merely display them
● The extension used for files of this type
● The Macintosh type and creator codes that are used when files of this type are saved
● The icon that is used to display this file type
● The subclass of the NSDocument class that should be used to read in this file type

The type and creator codes are 32-bit numbers that are stored in the file on any Macintosh HFS filesystem. These
codes allow the Finder to automatically launch the appropriate application when you double-click the name of a file
that stores a document associated with the application. For this reason, file extensions and creator types must be
unique. To assure that they are unique across all applications, Apple maintains a registry of creator codes.

The future of type and creator codes is currently uncertain. All versions of Mac OS
until Version 10 relied on them extensively. With Mac OS X, Apple has placed more
emphasis on file extensions. In part, this appears to stem from a desire to be more
compatible with the rest of the computer industry. Mac OS X Version 10.0 used
extensions and creator codes interchangably. With Version 10.1, Apple has tried to
deemphasize type and creator codes. Because it is not clear what the future holds, this
chapter shows how to use extensions as well as type and creator codes.

In writing this book, we requested from Apple a creator code for the MathPaper application. We were assigned the
code MATP. You should use this code for your copy of the MathPaper application. To get creator codes for your
own applications, you must fill out Apple's Creator Code Registration form at http://developer.apple.com/dev/
cftype/.

In the following steps, we will tell PB about the creator code and the MathDocument class.

43. In PB's main window, click on the Targets vertical tab.

44. Select the MathPaper target in the Targets pane at the upper-left corner of PB's main window.

http://developer.apple.com/dev/cftype/
http://developer.apple.com/dev/cftype/

45. Select the horizontal tab labeled "Application Settings".

46. Enter "MATP" in the Signature field of the Basic Information section.

47. Scroll down to the Document Types setting at the bottom of the pane and select it.

48. Enter "MathPaper" in the Name field to change the document type.

49. Enter "com.oreilly.MathPaper" in the Identifier field. The application identifier is a globally unique name
that you use to identify your application. It controls, among other things, the name of the file that will be
used to store the application defaults. (We'll talk more about this in Chapter 21.) You create the application
identifier by reversing your Internet domain name and appending the application name.

50. Click the pop-up menu labeled "None" next to the Name field and change the Role from None to Editor.

51. Enter "matp" in the Extensions field.

52. Enter "MATP" in the OS types field.

53. Enter "MathDocument" in the Document Class field.

54. Click the Change button at the bottom of the Application Settings pane.

We'll leave the icon file blank for now. When you are finished, the MathPaper application Document Types in PB's
main window should look like the window in Figure 10-10.

Figure 10-10. The MathPaper project with the application settings properly set

10.4.6 Setting Up PaperWindow.nib

In addition to the nib for the main menu, we will use the second (auxiliary) nib called PaperWindow.nib to
define the window that will be used by each piece of math paper. The NSDocumentController class will load this
nib each time it needs to create a new document window.

55. Still in PB, click the Files vertical tab to display the files in the MathPaper project.

56. Double-click PaperWindow.nib under Resources in the Groups & Files pane. As we've seen before, this
will open PaperWindow.nib in IB.

57. Choose Interface Builder Hide Others to simplify the screen.

58. In IB, double-click the icon labeled "Window" under the Instances tab in the PaperWindow.nib
window. If it's not already displayed, this will display the generic-looking window with the text "Your
document contents here" and bring it to the front of the screen.

59. Select the text "Your documents contents here" by clicking it once, then hit the Delete key to remove this
text.

60. Resize the new window so it's about three inches wide by four inches tall.

61. Click the Cocoa-Data button at the top of IB's Palettes window to see the Cocoa-Data palette, shown in

Figure 10-11.

Figure 10-11. The Cocoa-Data palette in IB

62. Drag an NSTextView object (see Figure 10-11) from IB's Cocoa-Data palette and drop it in the window
titled "Window".

If you type Command-1 with the NSTextView selected, the object will appear to be of the NSTextView class.
However, if you type Command-5, the true class (NSScrollView) of this object appears. The NSScrollView actually
"contains" an NSTextView "inside" it. (It also has an NSClipView.) We'll discuss NSTextView extensively in the
next chapter.

63. Move and resize the NSTextView so it's the same size as the window's content area (use the blue
guidelines). It should look like the window on the left in Figure 10-12.

Figure 10-12. NSScrollView covering the content area of a MathPaper window

64. Select the NSTextView by clicking it once, then drag to Size in the Inspector pop-up menu (or type
Command-3) to bring up the NSTextView Size inspector.

As we saw with the Calculator application, the Size inspector lets you specify how an NSView object will change in
size and location when its containing view, or superview, is resized. In our MathPaper interface, we will specify the
resizing characteristics of the NSTextView when the window's content view is resized (which occurs whenever the
window is resized). In Figure 10-13, the large square labeled "Autosizing" represents the selected NSView's

superview (content view, in our case), while the inner square represents the selected NSView (NSTextView, in our
case). The origin and size of the NSTextView are set in the box above the Autosizing box.

Figure 10-13. Size inspector for NSTextView object

The outer and inner Autosizing boxes each contain a set of two vertical and two horizontal lines. You can click on
any of these lines to change it from a straight line to a spring, and vice versa. The straight line labeled (1) in Figure
10-13 indicates that the NSTextView will remain the same distance from the top of the window, no matter how the
containing window is resized. If we change this line to a spring, the NSTextView will move up or down inside the
containing window when the window is stretched or shrunk vertically. Likewise, the straight line labeled (3)
indicates that the NSTextView will remain the same distance from the lefthand side of the window, regardless of
how the containing window is resized. If we change this line to a spring, the NSTextView will move left or right
inside the containing window when the window is stretched or shrunk horizontally. The spring labeled (2) indicates
that the NSTextView will stretch or shrink when the containing view is resized vertically; a straight line here would
indicate that the NSTextView does not vertically resize. The spring labeled (4) indicates that the NSTextView will
stretch or shrink when the containing view is resized horizontally; a straight line here would indicate that the
NSTextView does not horizonally resize.

65. Click the lines inside the inner square in the Autosizing area of the Size inspector so that they become
springs, as shown in Figure 10-13. This will cause the NSTextView to resize whenever its superview is
horizontally or vertically stretched or shrunk, which is precisely what we want for an NSTextView that
covers the content area (view) of a window.

10.4.7 Testing MathPaper's Document-Based Architecture

At last, it's time to test the skeletal MathPaper application, with some of our own features added:

66. Back in PB, click the build and debug button. Save all files when prompted.

MathPaper may run but give you an alert panel that states "Can't create new document."
If this happens, try cleaning out your ~/MathPaper/build folder by clicking PB's
Clean Active Target button, and then build and debug MathPaper again.

PB will create a build folder (if necessary), copy into this folder all of the files that it needs, compile your classes,
and start the application running within a copy of the gdb debugger. When your application starts running, a
generic application icon should appear in the Cocoa Dock (we've seen that before). A single blank MathPaper
window will be created automatically, because the application was launched without asking it to open a file.

67. Type Command-N twice. Two more windows will be created, as shown in Figure 10-14.

Figure 10-14. MathPaper running with an NSTextView in each window

68. Try resizing one or more of the windows to test your Autosizing settings. Note that you can type
mathematical expressions in the windows, but they are not evaluated because we haven't yet tied the
Evaluator to MathPaper.

69. Quit MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.5 Summary

Well, that's all we've got right now - nothing else works! But marvel at how much
functionality we get automatically from the document-based architecture. We've done very
little to the interface, but already MathPaper has the basic architecture it needs to handle
numerous documents simultaneously.

We did, however, do a lot of work on our back end, Evaluator, in the first part of this
chapter. In fact, Evaluator is now prepared to perform our requested calculations (as we
saw when we ran it in a Terminal window), but it needs to be connected with the interface
to work within the document-based architecture. In the next chapter, we'll tie the front-end
interface and the back end together. To do that, we'll have to make some modifications to
the MathDocument class and create the PaperController class. We'll also need to learn
about some new Cocoa classes specifically designed to handle interprocess
communications.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.6 Exercises

1. Write short but detailed documentation on how to use Evaluator in a Terminal
window. In particular, specify what types of mathematical expressions Evaluator
will properly calculate.

2. What happens when you enter two consecutive "illegal" mathematical expressions
in Evaluator? Fix the problem.

3. Investigate lex and yacc and enhance Evaluator by expanding the types of
mathematical expressions that it implements.

4. Explain the role of the NSDocumentController class in this application.

5. Implement an About box for MathPaper.

6. Investigate Cocoa's NSHelpManager class and implement a Help system for
MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 10. MathPaper and Cocoa'sDocument-Based Architecture

10.7 References

1. lex & yacc, by John Levine, Tony Mason, and Doug Brown (O'Reilly)

2. Manpages for lex, yacc, and make (type man lex, man yacc, and man
make in a Terminal window)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 11. Tasks, Pipes, and NSTextView

In the last chapter, we built the MathPaper front and back ends. The back end
(computational part) was created as a separate program called Evaluator. The front end was
created using Cocoa's powerful multiple-document architecture. In this chapter, we'll tie
the two ends together, learn more about processes, and modify the MathDocument class to
display the results of calculations performed by Evaluator.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.1 Processes, Pipes, and Resources

Here's the big picture of the MathPaper application: one process is responsible for all
interaction with the user, while other processes are responsible for performing the actual
mathematical calculations. The first process is the MathPaper process itself. The other
processes are Evaluator processes that will be created by the MathPaper process using the
NSTask class. Communication between the MathPaper and Evaluator processes depends
on the NSPipe and NSFileHandle classes. NSTask, NSPipe, and NSFileHandle are
Foundation classes that we haven't used yet; we'll describe them before using them.

The Unix operating system has always had a rich set of functions dedicated to interprocess
communication. Unix uses the fork() system function to "spawn" (create) child
subprocesses. After a subprocess is spawned, it can change what program it is running by
calling the execv() system function. One way of communicating with subprocesses is
via a pipe, a special kind of file object used by Unix to transmit information between
processes. Unix is powerful, but the Unix functions fork() and execv() can be
quite complicated to use. You can learn more about these system calls by typing man
fork, man pipe, and man execv at the Terminal command line.

Rather than forcing us to use these functions directly, Cocoa gives us easy-to-use
Foundation classes that provide a clean, object-oriented interface.

Objects of the NSTask, NSPipe, and NSFileHandle class type will have specific tasks in
MathPaper. Each NSTask object will spawn a child Evaluator process, while NSPipe
objects will be used to enable the MathPaper and Evaluator processes to communicate with
one another via the Unix pipe structure. (As with pipes in the physical world, anything
pushed in one end of a Unix pipe comes out the other end.) To provide for two-way
communication between two processes, our MathPaper application will use a pair of pipes:
one for sending information from the PaperController to Evaluator, and one for getting the
results back from Evaluator.

While creating and using pipes can be complicated, the NSTask and NSPipe classes do all
of the hard work for you. As with any class, you need to understand the NSTask and
NSPipe class interfaces in order to use them, but you need not be concerned with the
details of how these classes actually work.

Each Unix pipe has two ends, represented by a pair of NSFileHandle objects. The
NSFileHandle class provides an object-oriented interface for files and communications
channels. You can create an NSFileHandle that is associated with a file, with a network
connection, or with a pipe.

In summary, each PaperController object in MathPaper will create:

● One NSTask object that will create and manage an Evaluator process
● Two NSPipe objects, one for sending information from the PaperController object

to an NSTask object, and a second for sending information in the opposite direction
between the same two objects

● Four NSFileHandle objects, two each for the two pipes described in the previous
bullet

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.2 Making Evaluator a MathPaper Auxiliary Executable

In the previous chapter, we created and tested Evaluator in a Unix shell. Now we want to
add the Evaluator source files (grammar.y and rules.l) to the MathPaper project and
create a second target, so that the MathPaper project can create both the front end and the
back end of the MathPaper application. We'll name this second target "Evaluator", and
we'll make the MathPaper target dependent on the Evaluator target, which will result in the
Evaluator target's being built before the MathPaper target is built. We'll also set up the
MathPaper target so that the Evaluator executable is automatically copied into the
MathPaper application wrapper as an auxiliary executable.

What a lot of work! Until now, the MathPaper application itself has been the only target.
Let's get started on the modifications that we need.

1. Open MathPaper.pbproj in Project Builder.

2. Choose Project New Target, and a new sheet will drop down in PB's main
window.

3. Scroll to the bottom of the new sheet and select Tool, as shown in Figure 11-1.

Figure 11-1. Selecting a new target for MathPaper

4. Click the Next button and a second new sheet will drop down, prompting for the
name of the new target.

5. Enter "Evaluator" in the Target Name field in this second drop-down sheet, as
shown in Figure 11-2. Select MathPaper as the project to which to add the new
target.

Figure 11-2. Giving the new target a name and project

6. Click the Finish button to add the new Evaluator target to the MathPaper project.

After you complete these steps, the Evaluator target should appear next to a target icon in
the Targets pane of the MathPaper.pbproj project window. The MathPaper project
was already in this pane because it was our first build target.

At this point, the Evaluator target has no source files with which it can build its target.
Thus, our next task is to add the Evaluator source files rules.l and grammar.y to the
project.

7. Choose Project Add Files to begin the process of adding Evaluator's source
files to the project. A new drop-down sheet appears with a filesystem browser.

8. Select the yacc source file grammar.y file in the browser (it should be in your
~/Evaluator folder), as shown in Figure 11-3.

Figure 11-3. Finding the grammar.y yacc source file in the filesystem

9. Click the Open button to get a new sheet, as shown in Figure 11-4.

Figure 11-4. Adding grammar.y to the Evaluator target

10. Click the checkbox next to "Copy items into destination group's folder",[1] choose
the Project Relative Reference Style, click the "Create Folder References for any
added folders" radio button, click the Evaluator target, and finally click the Add
button. Make sure that your settings are the same as those in Figure 11-4 before
clicking Add.

11. Choose Project Add Files again and add the lex rules file, rules.l, as you
did with grammar.y. Make sure you choose the same settings as in Figure 11-4
for rules.l.

It is important that you add grammar.y before you load
rules.l, because compiling the rules.l file requires an
intermediate file produced when the grammar.y file is
compiled. If you get the order wrong, you can manually change it
by rearranging the order of the icons for these files within the
Sources section of the Files & Build Phases tab of the Evaluator's
Targets pane. The icon for the grammary.y file should be
above the icon for the rules.l file.

If you check your ~/MathPaper folder in the Finder, you'll find that the grammar.y
and rules.l files have been added to the folder. Next, we need to inform PB that the
MathPaper target depends upon the Evaluator target.

12. Click the vertical Targets tab in PB's main window to open the Targets pane.

13. Drag the Evaluator target and drop it on top of the MathPaper target. (Drop the
Evaluator target when the disclosure triangle changes to your highlight color - it
took us several tries to make it work.)

Your Targets pane should now look like the one on the left in Figure 11-5.

Figure 11-5. Targets pane - adding Evaluator to MathPaper target (left) and selecting
Evaluator as active target (right)

Now we need to tell PB that the tool created when the Evaluator target is built is an
auxiliary executable for the MathPaper target:

14. Make Evaluator the active (build) target by clicking the area to the left of the
disclosure triangle next to its name. Your Targets pane should now look like the
one on the right in Figure 11-5.

15. Build and run Evaluator by clicking the build and run button.

16. With Evaluator running in the Run pane in PB's main window, verify that it works
by typing some mathematical expressions. Recall our type conventions: what you
type is in bold and the results are in regular type.

 30
2002/2001
 1.0005
sin(2*pi) + cos(4*pi)
 1

The output is shown in Figure 11-6.

Figure 11-6. Evaluator running in PB's main window

17. Click the stop button in PB's main window to terminate the Evaluator programs
running within the PB environment.

As a result of our building the Evaluator target, you should now have an Evaluator
executable in your ~/MathPaper/build folder. It has a little Terminal-like icon next to
it. The Evaluator executable will also be listed in the Products section of PB's Groups
& Files pane. We now need to tell PB that MathPaper needs this executable in order to run:

18. Make MathPaper the active (build) target by clicking the area to the left of the
MathPaper disclosure triangle. Your Targets pane should now look like the one on
the left in Figure 11-5 again.

19. Select the Files & Build Phases tab.

20. Select the Frameworks & Libraries section.

21. Choose the Project New Build Phase New Copy Files Build Phase
command. A new section labeled "Copy Files" will appear.

22. Select the Files tab to display the Groups & Files tree view.

23. Scroll to the bottom to reveal the Products folder.

24. Open the Products folder to reveal the icon labeled "Evaluator".

25. Drag the Evaluator icon from the Products folder to the Files field of the Copy Files
section.

26. Change the pop-up menu to read "Executables". The window should now appear as
ours does in Figure 11-7.

Figure 11-7. The Evaluator product is added to a newly created Copy Files section of
the Files & Build Phases tab of the Targets pane

27. Type Command-S to save the project file.

Before moving on, we'll clean up our Groups & Files browser by putting all of the
filenames in their correct groups.

28. Drag the recently added Evaluator executable into the Resources group.

29. Similarly, drag the grammar.y and rules.l source files into the Other Sources
group. It's easier to do this when the groups are open.

If you open the groups, your Groups & Files pane should look like the one in Figure 11-8.
Evaluator should be listed both as a resource for the MathPaper project and as a product
itself. (The order of files within a group doesn't matter; in fact, the distribution of files into

these groups is mostly a convenience for programmers.)

Figure 11-8. Groups & Files pane with Evaluator and its source files added

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.3 MathDocument Class Modifications

Recall from the last chapter that Cocoa's multiple-document architecture uses a subclass of
the NSDocument class for loading and saving documents, and a subclass of the
NSWindowController class for actually managing the document window itself. For simple
applications, it may not be necessary to subclass both NSDocument and
NSWindowController - you can put all of the necessary code in your subclass of the
NSDocument class. However, if you plan to create several different windows for a single
document, or if you want to have complex functionality embodied within your document
windows, Apple recommends that you subclass NSWindowController. (For a more detailed
discussion, we recommend that you read the Cocoa documentation pages for the
NSDocument, NSWindowController, and NSDocumentController classes.)

In the next section, we will create a class called PaperController as our subclass of the
NSWindowController class. To teach MathDocument about PaperController, we need to
make two modifications to the MathDocument.m class file:

1. Back in PB, open the MathDocument.m class file (this is the file that was
originally called MyDocument.m).

2. Add the line shown here in bold near the beginning of the MathDocument.m file:

// MathDocument.m

#import "MathDocument.h"
#import "PaperController.h"

Recall that the MathDocument class is a subclass of NSDocument. If we look at the code for
MathDocument.m that we listed in the last chapter (or view it in PB), there is a comment
in the windowNibName method that tells us to override NSDocument's
makeWindowControllers method whenever we subclass NSWindowController. We'll do
just that in the next step:

3. Override NSDocument's default makeWindowControllers method by adding the
method shown here in bold just before the @end of the MathDocument.m file:

// Override the NSDocument makeWindowControllers
// method to specify our own controller

- (void)makeWindowControllers
{

 PaperController *ctl =
 [[PaperController alloc]
 initWithWindowNibName:[self windowNibName]];
 [ctl autorelease];
 [self addWindowController:ctl];
}
@end

This new method overrides NSWindowController's makeWindowControllers method. It
creates an instance of PaperController, autoreleases the instance, and finally adds the
instance to the list of managed window controllers using addWindowController:.

There is another automatically generated comment that says we
should remove the implementation of windowNibName when
overriding the makeWindowControllers method. We have not
found this necessary using Mac OS X Version 10.1, but it may be
necessary in the future.

You may be confused about why we autorelease the PaperController instance - after all,
don't we want to use this object later? Well, recall from Chapter 4 that the autorelease
message doesn't immediately release an object. Instead, it decrements the object's reference
count. If no other part of our program increments the object's reference count by the time
that the next event is requested from the user, the object will automatically be freed. In this
case, however, the PaperController object will automatically be retained by the
addWindowController: method call.

We need to autorelease the PaperController object because we alloc-ed it. But we don't want
to send the object a full-blown release message, because we don't want it to be freed. It is
for this purpose that the autorelease method was invented.

It's finally time to create the PaperController class that we've been discussing. Most of our
"controlling" code will be placed in this class.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.4 Creating PaperController, a Subclass of NSWindowController

In this section, we will create our initial PaperController class with the method that starts up Evaluator:

1. Double-click the PaperWindow.nib file in PB's main window to open it up in IB.

2. Select the Classes tab in the PaperWindow.nib window.

3. Select the NSWindowController class (under NSObject - use the Search field if necessary).

4. Choose the Classes Subclass NSWindowController menu command, as shown in Figure 11-
9.

Figure 11-9. Subclassing NSWindowController

5. Type Command-1 to display the myWindowController Class Info panel.

6. Change the name of your new subclass from "MyWindowController" to "PaperController".

7. Add a new outlet named "theText" (note that there is already an outlet called "window").

8. Select the File's Owner under the Instances tab in the PaperWindow.nib window.

9. Type Command-5 and change the Custom Class of the File's Owner to PaperController (because
the PaperController will load the PaperWindow.nib file).

10. Control-drag from the File's Owner icon to the text area inside the window and double-click
theText to make a connection, as shown in Figure 11-10.

Figure 11-10. Connecting File's Owner to NSTextField inside NSScrollView

11. Now select the PaperController class under the Classes tab in the PaperWindow.nib window.

12. Choose the Classes Create Files for the PaperController menu command to create new
PaperController.h and PaperController.m class files in the MathPaper target.

13. Click Choose at the bottom of the resulting sheet to create the class files in your ~/MathPaper
folder.

14. Back in PB, check to see if the PaperController.m and PaperController.h files were
inserted in the Classes group in the Groups & Files pane. If not, drag them from the group in
which they were inserted into the Classes group (after all, PaperController is a class!).

Next, we need to add five more instance variables to the PaperController class. They will eventually be
set to point to objects that we described earlier in this chapter. We will also change the declared type of
the theText instance variable so that it exactly matches the NSTextView class type (theText was the
name of the PaperController outlet we set up in IB before we created the class files). This second step is

not strictly necessary, but it enables the Objective-C compiler to do some additional compile-time
checking for us (and it's good style!). Note that this strong typing of an outlet can also be set in IB's Info
dialog.

15. Still in PB, edit the PaperController.h file by adding or replacing the lines shown here in
bold:

#import <Cocoa/Cocoa.h>

@interface PaperController : NSWindowController
{
 NSTask *evaluator;
 NSPipe *toPipe;
 NSPipe *fromPipe;
 NSFileHandle *toEvaluator;
 NSFileHandle *fromEvaluator;
 IBOutlet NSTextView *theText;
}

@end

Next, we'll work on the PaperController class implementation. The first method that we will add is
windowDidLoad. This method is declared in PaperController's superclass, NSWindowController, so we
are actually overriding the method. The windowDidLoad method will automatically be invoked after the
PaperWindow.nib file is loaded and the PaperController class is instantiated.

16. Insert the entire windowDidLoad method shown here into the PaperController.m file
(which has only three statements in it so far). Make sure you put this method between the two @
directives.

- (void)windowDidLoad
{
 NSString *path=0;
 [super windowDidLoad];
 [[self window] makeFirstResponder:theText];
 path = [[NSBundle mainBundle]
 pathForAuxiliaryExecutable:@"Evaluator"];

 toPipe = [NSPipe pipe]; // NSTask below will retain
 fromPipe = [NSPipe pipe]; // NSTask below will retain
 toEvaluator = [toPipe fileHandleForWriting];
 fromEvaluator = [fromPipe fileHandleForReading];
 evaluator = [[NSTask alloc] init];
 [evaluator setLaunchPath:path];
 [evaluator setStandardOutput:fromPipe];
 [evaluator setStandardInput:toPipe];
 [evaluator launch];
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(gotData:)

 name:NSFileHandleReadCompletionNotification
 object:fromEvaluator];
 [fromEvaluator readInBackgroundAndNotify];
}

This method may look complicated, but it really isn't. Let's look at it piece by piece.

The first and third lines of the method create and initialize an NSString object called path, which will
contain the file path of the Evaluator program. The next two lines invoke the superclass
(NSWindowController) method and make the window's text area the first responder.

The next four lines of the method create two pipes: one that will send data to the Evaluator process, and
one that will receive data from the process. For each of these pipes, we obtain the particular file handle
that the PaperController will need to use.

After the pipes are created, the method creates the NSTask object that will actually spawn and
communicate with the Evaluator process. We tell the task the path of the Evaluator program and give it
the two pipes that we will use for our bidirectional communications. We then send [evaluator launch],
which starts the process.

After the task is launched, we need some way of finding out when it has data available for the
PaperController. We could poll the fromEvaluator NSFileHandle class 10 or 20 times a second, but that
would be incredibly wasteful. Instead, we ask the Cocoa notification system to watch the fromEvaluator
object for us. When this object has data, it will emit a special message called
NSFileHandleReadCompletionNotification to any object that happens to be observing. Our
[NSNotificationCenter defaultCenter] message asks the default notification center to send our
PaperController object a gotData: message whenever data is available. This notification request will
remain until it is removed or our program exits.

The last line asks the fromEvaluator object to start watching for data from Evaluator. The NSFileHandle
is checked for data as part of the application's event loop.

Finally, we need to write the PaperController class cleanup code. Because the PaperController registered
to receive notifications, it needs to unregister when it no longer wishes to receive them. Because we have
alloc-ed Evaluator, we should be sure to release it when the PaperController object is no longer needed.
The logical place for this cleanup code is in the dealloc method, which is called when the
PaperController is about to be destroyed.

17. Add the following dealloc method to the PaperController.m file:

- (void)dealloc
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [evaluator release];
 [super dealloc];
}

We're getting closer! We have already arranged for the Evaluator program to be built automatically when
the MathPaper application is built and for Evaluator to be placed automatically into the MathPaper

bundle. We have created our NSWindowController subclass, PaperController, and arranged for
MathDocument to instantiate PaperController automatically. The only things left to do are to write the
code that will read each line of text entered when the user hits the Return key and send it to Evaluator,
and then to write the code that will read the results from Evaluator and display them in the NSTextView.
Before we can do that, however, we need to explain a lot more about how the NSTextView works.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.5 The NSScrollView and NSTextView Classes

In Chapter 10 we introduced the NSScrollView and NSTextView classes when we dragged
an NSScrollView object from IB's Cocoa-Data palette into a MathPaper window. At the
time, we said that the NSScrollView object "contains" an NSTextView object. Perhaps a
better way of putting it is to say that an NSTextView is "embedded" inside each
NSScrollView. The NSScrollView object in IB's Palettes window actually contains the
following nine objects:

NSScrollView

Displays the scroller and does the actual scrolling

NSTextView

Displays the text

NSClipView

Helps arrange the communication between the NSScrollView and the NSTextView

Vertical scroller

Controls up-down scrolling and shows where you are in the document

Horizontal scroller

Controls left-right scrolling and shows where you are in the document

NSTextStorage object

Holds the data that the NSTextView displays

NSTextContainer object

Defines the region where the text will be displayed

NSLayoutManager object

Controls the layout of the NSTextStorage object's information within the
NSTextView

NSSimpleHorizontalTypesetter

Does the typesetting

You can control whether each scroller is displayed by sending the setHasVerticalScroller:
or setHasHorizontalScroller: messages (with the arguments YES or NO) to the
NSScrollView. By default, the NSScrollView that you drag off IB's Cocoa-Data palette
displays the vertical scroller, but not the horizontal one.

NSTextView objects are most frequently used with NSScrollView objects, which is why
Interface Builder provides them that way. We'll learn other ways to use NSScrollViews in
the GraphPaper application later in this book.

The NSTextView object is Cocoa's general-purpose text editor. An NSTextView object is
used by almost every application that allows text entry. For example, Mac OS X's TextEdit
text editor uses the NSTextView class as its main editing tool. It is also used by many
commercial drawing applications, such as Stone Design's Create.

An NSTextView object can do all of the following:

● Display single-font (monofont) text or multiple-font text
● Automatically word-wrap
● Work with the pasteboard
● Save its contents in a stream of ASCII, Unicode, or RTF text

The NSText class supports a general programmatic interface for objects that manage text.
However, you typically use instances of its subclass, NSTextView.

Every NSWindow object has a special NSText object called the field editor that can be
assigned minor editing tasks for the NSWindow. This NSText object is shared among
NSForm, NSMatrix, NSBrowser, and NSTextField objects located within a single
associated on-screen window. When you are working with text in one of these objects in a
window, the field editor reads in the text and lets you edit it. When you're done, the field
editor NSText object spits out its contents and puts the text back into the appropriate
location. The shuttling about of the field editor is all fairly transparent and is handled
automatically by these classes.

11.5.1 NSTextView Class Basics

Like objects of the NSApplication and NSWindow classes, an NSTextView object can
have a delegate object. You can use an NSTextView's delegate to find out when the user

has made changes to the text or to prevent changes from happening under certain
circumstances, as described in Table 11-1.

Table 11-1. Common delegate methods of the NSText and NSTextView classes

Delegate method Purpose

-(void)textDidBeginEditing: (NSNotification *)
aNotification

Alerts the delegate that the
user has started to edit the
NSText(View) object.

-(void)textDidChange: (NSNotification *)aNotification

Alerts the delegate that the
text or formatting of the
NSText(View) object has
changed.

-(void)textDidEndEditing: (NSNotification *)
aNotification

Alerts the delegate that the
user is finished editing the
NSText(View) object. This
message is usually sent
when the user clicks
elsewhere on the window.

- (BOOL)textShouldBeginEditing: (NSText *)
aTextObject

Requests permission from
the delegate for the user to
edit the text contained
within the NSText(View)
object. If the delegate
returns YES, editing is
allowed. If the delegate
returns NO, editing is not
allowed.

- (BOOL)textShouldEndEditing: (NSText *)aTextObject

Requests permission from
the delegate to allow the
user to end editing. The
delegate can use this
method to take the
opportunity to validate the
contents of the NSText
(View) object, and to force
the user to change an
invalid value to a valid
value before allowing the
user to do something else
inside the application.

Most often, you'll use an NSTextView object to display a chunk of text for the user (e.g.,
the contents of an article or a mail message). Alternatively, you might use an NSTextView
object to let the user enter some free-form text (again, such as a mail message). If you're
writing a full-featured text editor, the NSTextView object is a great place to start. With its
architecture, you can easily create an elaborate system that supports multiple columns of
text, runarounds, and many other features.

When it runs as part of an application, the NSTextView object contains a copy of all of the
text that you are editing. The more text that you have, the longer it will take to load the text
into the NSTextView object and to display it for the first time. However, the NSTextView
object collection is still extremely fast - a lot of very smart people have been working for
many years on these objects. Give them a try before you try to do better.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.6 PaperController Class Modifications

Now it's time to finish the PaperController class. To do this, we need to make the following changes to
PaperController:

● Add a method that waits for the user to hit the Return key, gets the new formula that the user has typed,
and then sends it to the appropriate Evaluator process.

● Add a method that gets invoked when there is data from the Evaluator process ready to be displayed in the
NSTextView.

● Terminate the Evaluator process when a MathPaper window is closed.

11.6.1 Creating the NSTextView Delegate

There are many ways to find out when the user hits the Return key. One way is to subclass the NSTextView class
and examine each event; another is to set up a delegate object that will be alerted each time the text inside the
NSTextView changes. If the change results from a carriage return, our delegate can then grab the last line of the
NSTextView object and send that line to Evaluator.

An NSTextView delegate can receive all sorts of special messages when things happen to the NSText object. The
one that we care about here is the textDidChange: message, which is sent to the delegate object whenever the text
changes. To find out if the text changed because the user hit the Return key, our delegate method asks the window
for the current event; it then asks the current event for its characters and checks whether the resulting string is
equal to a carriage return.

After the MathPaper user hits the Return key, our delegate method asks the NSTextView object for an NSString
that contains all of the text that is currently stored inside the NSTextView. It then searches backward through this
NSString object for the second-to-last carriage-return character and creates a substring containing the characters
located between the last two carriage returns. This substring is then sent to the Evaluator process using
NSFileHandle's writeData: method. We also temporarily set the NSTextView in the MathPaper window to be
"not editable", because we don't want to allow the user to type a new equation while Evaluator is calculating the
results.

Although we could create a separate class for our NSTextView delegate, instead we'll make our PaperController
class the NSTextView's delegate and implement the textDidChange: delegate method in PaperController.
m.

1. Back in IB, open PaperWindow.nib.

2. Double-click the NSTextView that's "inside" the NSScrollView object to select it (you should see a
blinking edit cursor). If you only single-click the NSScrollView/NSTextView combination, you'll get the
NSScrollView and not the desired NSTextView.

3. Control-drag from the center of the NSTextView object to the File's Owner icon in the PaperWindow.
nib window.

4. Double-click the delegate outlet in the NSTextView Connections inspector to set the File's Owner as
the delegate of the NSTextView, as shown in Figure 11-11.

Figure 11-11. Making PaperController (File's Owner) the delegate of the NSTextView

5. Back in PB, insert the textDidChange: delegate method into the PaperController.m file, as follows:

// NSTextView delegate method textDidChange:
// If current event is a carriage return, do special processing
- (void)textDidChange:(NSNotification *)notification
{
 NSString *key = [[[self window] currentEvent] characters];

 if ([key isEqualToString:@"\r"]) {

 // Get the last line of text from theText and process it

 NSString *str = [theText string];
 int length = [str length];
 int length = [str length];
 int i;

 // Get the last line and send it to Evaluator if it has
 // anything on it

 for (i=length-1;i>=0;i--) {

 if (i==0 || [str characterAtIndex:i-1] == '\n') {
 NSRange llRange = NSMakeRange(i,length-i);
 NSString *lastLine = [str substringWithRange:llRange];

 if ([lastLine length]>1) {
 NSData *sendData =
 [lastLine dataUsingEncoding:NSASCIIStringEncoding
 allowLossyConversion:YES];
 [toEvaluator writeData:sendData];

 // Do not allow any more changes to the text
 [theText setEditable:NO];
 }
 return;
 }
 }
 }
}

Our textDidChange: method uses NSString's dataUsingEncoding:allowLossyConversion: method to create an
NSData object, which is sent to the NSFileHandle object that connects to Evaluator. The NSData class is similar to
the NSString class, except that NSData objects can represent any arbitrary block of binary data. Cocoa provides
several methods for converting between NSString and NSData objects.

11.6.2 Getting Data from Evaluator

Earlier in this chapter, we asked the application's default notification center to send the gotData: message to our
PaperController object each time Evaluator has new data to be displayed, but we haven't yet created the gotData:
method to receive the data! We'll do that now.

6. Still in PB, add the gotData: method that follows to the PaperController.m file:

- (void)gotData:(NSNotification *)notification
{
 NSData *data;
 NSString *str;

 data = [[notification userInfo]
 objectForKey:NSFileHandleNotificationDataItem];

 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 // Add the data to the end of the theText object
 [theText appendString:str];
 [theText appendString:@"--------------------\n"];

 // Scroll to the bottom
 [theText scrollRangeToVisible:
 NSMakeRange([[theText textStorage] length], 0)];

 // Register to get the notification again
 [fromEvaluator readInBackgroundAndNotify];

 // Allow the user to type additional math expressions
 [theText setEditable:YES];

 // And release the string

 [str release];
}

This method is a little tricky because it interfaces with Cocoa's notification system. According to the
NSFileHandle documentation, when the NSFileHandle posts a notification that it has data, the data is placed inside
an NSDictionary object under the key NSFileHandleNotificationDataItem.

The first executable statement in gotData: gets the NSData object that contains the (raw) data from the file handle,
and the second statement turns the NSData object into an NSString object. The third statement sends this string an
autorelease message, which assures that it will be released if it is not retained elsewhere in our program (and it
won't be). The next two statements append the string from Evaluator to the end of theText, and then follow this
with a line of hyphens and a newline that will separate mathematical expressions from one another in the window.

NSFileHandleReadCompletionNotifications are one-shot. To get the next batch of data from the NSFileHandle,
the PaperController class needs to ask the NSFileHandle for the next notification. Finally, the method makes
theText editable, so that the user can type in more data.

11.6.3 Adding a Method Using a Category

If you read the gotData: method and then closely read the documentation for the NSText and NSTextView
classes, you'll notice something odd: the NSTextView class does not implement an appendString: method! This
is a useful method to have, but for some reason, Apple didn't include it. Thus, we'll have to create it ourselves.

Fortunately, there's an easy way around this problem - we'll add the method to Cocoa's NSTextView class using an
Objective-C category. Being able to add methods to existing classes without subclassing is one of the cooler things
that you can do with Objective-C. We'll do just that in the following two steps, adding the NSTextView
(MathPaper) category that includes the appendString: method we need:

7. Insert the NSTextView(MathPaper) category interface shown here into the PaperController.h file,
after the existing @end directive:

@interface NSTextView(MathPaper)
- (void)appendString:(NSString *)str;
@end

8. Now insert the category implementation shown here after the existing @end directive in the
PaperController.m file:

@implementation NSTextView(MathPaper)
- (void)appendString:(NSString *)str
{
 int len = [[self textStorage] length];
 [self replaceCharactersInRange:NSMakeRange(len,0)withString:str];
}
@end

This category adds the appendString: method to the NSTextView class (not the PaperController class, even
though it's located in PaperController.m!). The method first finds out how many characters are in the
NSTextView's textStorage object. It then calls the NSMakeRange() utility function to create an NSRange
object (location and length) to pass to NSTextView's replaceCharactersInRange:withString: method, together
with the appendString: method's string argument. The replaceCharactersInRange:withString: method replaces
the zero-length selection that exists at the end of the textStorage object with the passed-in string.

9. Now press the pop-up menu button labeled Evaluator near the top of PB's main window and drag to
MathPaper. Note the target icon on this pop-up menu, indicating that we have just changed our (build)
target from Evaluator to MathPaper.

10. Build and run the MathPaper application.

11. Type some mathematical expressions in MathPaper's window and hit Return. The expressions should be
evaluated and you should get results!

12. Choose File New (or type Command-N) three times to get a total of four MathPaper windows.

13. Type some additional mathematical expressions in the key MathPaper window, as shown in Figure 11-12.

Figure 11-12. MathPaper running with several windows

14. Choose the Window menu and note that the four MathPaper windows are listed, as shown in Figure 11-12.
These menu commands work! The multiple-document architecture provides this functionality.

15. Choose the Services menu, and note that its commands work too.

16. Do not quit MathPaper yet.

Before we move on, it's useful to see which Unix processes are running when MathPaper is running:

17. Open a Terminal window and type ps uxww in it. (If you prefer, use ProcessViewer here.)

As we saw previously, the ps command displays processes running on your Unix box. The u option tells ps to
display processes owned by the user (i.e., you), the x option tells ps to display processes without controlling
terminals, and the ww option tells ps to display in the wide format (so you can see the long file paths). Type man
ps in the Terminal window for all the gory details.

The COMMAND column of the ps uxww display contains one MathPaper process:

/Users/wsurfer/MathPaper/build/MathPaper.app/Contents/MacOS/MathPaper

The COMMAND column of the ps uxww display also contains four Evaluator processes that all look like this:

/Users/wsurfer/MathPaper/build/MathPaper.app/Contents/Resources/Evaluator

Each one of the Evaluator processes is tied to one of the four MathPaper windows. If you find it's too difficult to
read the output of the ps uxww command, try typing this instead:

ps uxww | grep Evaluator

This will display only the processes that include the "Evaluator" string.

18. Now close all four of the MathPaper windows by clicking their red close buttons, but leave MathPaper
running.

19. Type ps uxww in the Terminal window again.

You would expect the four Evaluator processes to go away one by one as the windows are closed, but in fact they
are all still running (with no useful purpose!). We will have to do something about that.

20. Quit MathPaper.

21. Type ps uxww in the Terminal window a third time, and you'll see that all five of the processes (one
MathPaper and four Evaluator processes) have ceased running.

11.6.4 Killing the Evaluator Processes

It's clear that releasing the NSTask object associated with the Evaluator in the release method doesn't kill the
Evaluator process itself. As a result, Evaluator processes hang around until the MathPaper application itself is
killed. To kill each Evaluator process properly, we need to send the associated NSTask a terminate message
before releasing it. We'll do that shortly.

Many programs that run on Mac OS, Windows, and Unix do not properly clean up after themselves: they rely on
the operating system to do their housekeeping. You should not depend on the operating system this way with
Cocoa, not because of any flaw in the Mac OS X operating system, but rather because of its stability. Cocoa
applications frequently need to run for days or even weeks without being shut down. If you waste resources - even
a little bit - it may become obvious (to the detriment of your application and to you as a developer!).

22. Insert the line shown here in bold into the autorelease method in the PaperController.m file:

@implementation PaperController

- (void)dealloc

{
 [evaluator terminate];
 [evaluator release];
 [super dealloc];
}

When each MathPaper window is closed, the PaperController object will be sent a release message. Because this
PaperController had only one reference count, this will cause the PaperController object to be sent a dealloc
message. When this message is received, the PaperController will first terminate and then release the Evaluator's
NSTask. (The NSTask will then release itself.)

23. Build and run MathPaper again. Type ps uxww in a Terminal window to test whether the Evaluator
processes are killed as the MathPaper windows are closed.

24. Quit MathPaper.

11.6.5 Giving Proper Titles to MathPaper Windows

Do you think it's somewhat unsettling that our MathPaper application simply says the word "Untitled" in the title
bar of each window, rather than stating the name of the application? If so, you can make a three-line addition to
the PaperController.m class implementation file to change this. Let's do it.

25. Add the following method, windowTitleForDocumentDisplayName:, to the PaperController.m
file:

- (NSString *)windowTitleForDocumentDisplayName:
 (NSString *)displayName
{
 return [@"MathPaper: " stringByAppendingString:displayName];
}

26. Build and run MathPaper again and note the more appropriate window titles, as shown in Figure 11-13.

Figure 11-13. MathPaper windows with better titles

The NSWindowController class automatically invokes the windowTitleForDocumentDisplayName: method to
determine the actual window title that is displayed. Our version of this method returns an NSString that has the
title "MathPaper:" before the filename. (Recall that the NSString object is autorelease-d when the application
returns to the main event loop.)

This situation with the title demonstrates why it is important to read the Cocoa
developer documentation. Before we wrote this chapter, we didn't know about the
windowTitleForDocumentDisplayName: method (it wasn't present in earlier
versions of the Application Kit.) But we thought that the plain "Untitled" window was
too barren, so we opened up the documentation for NSWindowController and
searched for the word "title". Within two minutes, we knew how to remedy the
problem, and the code worked perfectly the first time.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.7 Summary

We began this chapter by adding the Evaluator back end we created in the previous chapter
to the MathPaper project. Then we created a new subclass of NSWindowController, called
PaperController, where we put most of our "controlling" code - the code that ties our lex-
and yacc-built back end together with the Cocoa-supplied document front end.
MathPaper's parts (Evaluator, document architecture, PaperController) fit the model-view-
controller paradigm nicely. Along the way, we discovered a few issues with our program
and learned a bit about Unix processes and some powerful classes (such as NSTextView)
in order to take care of those program issues.

We can still improve MathPaper considerably. For example, the text output in the windows
is plain, and we haven't done anything about file operations such as printing, saving,
opening, and so on. In the coming chapters, we'll start working on solving these
shortcomings.

Another important thing missing from the MathPaper application is the ability to save and
load files. We'll learn how to do that in Chapter 13.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 11. Tasks, Pipes, and NSTextView

11.8 Exercises

1. Why didn't we need to add our Makefile from the last chapter to PB?

2. Why did we choose to add Evaluator to the MathPaper project in PB as a Tool? Are
there any other choices?

3. Where did we put interface and implementation code for the NSTextView
category? Is there a better place to put it? What options for category placement are
available?

4. Find out when and how often each of your MathPaper methods is invoked. Do this
by inserting NSLog() function calls near the beginning of every method in the
MathDocument and PaperController classes. Then run MathPaper within PB to see
the logged output in the Run pane. Are you surprised at the sequence of method
invocations? Does the "big picture" we described in the last chapter make sense?

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 12. Rich Text Format and NSText

The MathPaper windows that we built in the last chapter didn't quite live up to their initial
billing. We promised what you see on the left side of Figure 12-1 but gave what you see on
the right. The difference between the two windows is a matter of fonts and formatting.
Although the NSTextView object that we used allows a great deal of control over fonts and
formatting, when we invoked the replaceCharactersInRange:withString: method in
PaperController we were simply pasting plain ASCII text into the selection, which comes
up as left-justified monofont text - not very interesting. To get the promised fonts and
formatting, we'll have to learn about Rich Text Format (RTF). Most of today's word
processors (e.g., TextEdit, Microsoft Word) support RTF, and it has been used as a cross-
platform format for years, so you probably know a little bit about it already. In this chapter,
we'll show you how to code RTF right into your applications.

Figure 12-1. What we promised (left) and what we've delivered so far (right)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 12. Rich Text Format and NSText

12.1 Rich Text Format

Suppose you want to amaze your friends by showing them how easy it is to create text with
different font sizes in a window. You might want the final window to look something like that
shown in Figure 12-2.

Figure 12-2. Desired text output

One way that you can do this is by using the NSText class as if it were a simple text editor, sending
an instance of NSText commands to insert text, select the text, and then change the text to the
desired size. Although this is an inefficient way to manipulate the NSText class, it is conceptually
easy.

12.1.1 Formatting NSTextView Output

The NSText class (the superclass of our friend, NSTextView) provides lots of commands for
selecting, modifying, and altering the text it contains. The NSFont class allows us to create a font
with any name and point size, and the NSMakeRange() function returns an NSRange structure
with a requested starting point and length. With the NSFont and NSRange, we need to send only a
few messages to create the text in Figure 12-2.

Assume that theText is an object of the NSText class. The first message we'll need is:

[theText replaceCharactersInRange:aRange withString:aString]

which replaces a substring of text in our NSText object with the string "aString". The substring
being replaced starts at position aRange.start and has length aRange.length. This is
conceptually the same as selecting the substring in an editor and then typing some new text to
replace it.

The next message we'll need is:

[theText setFont:aFont range:aRange]

which sets the text in theText (an NSText object) in the range aRange to have the font aFont.

The last message we'll need is:

[NSFont fontWithName:aName size:aSize]

which invokes an NSFont class (or factory) method to create a new font object with the name
aName and point size aSize.

Following is the method we used to create the Helvetica text in the window in Figure 12-2:

- (IBAction)fontDemo:(id)sender
{
 float s;

 for (s = 10.0 ; s < 36.0 ; s += 5.0) {

 NSString *str = [NSString
 stringWithFormat:@"This is Helvetica in size %g\n", s];

 int length = [[theText textStorage] length];
 NSRange range;

 [theText replaceCharactersInRange:NSMakeRange(length,0)
 withString:str];

 range = NSMakeRange(length,[str length]);

 [theText setFont:[NSFont fontWithName:@"Helvetica" size:s]
 range:range];
 }
}

If you want to see the fontDemo: method's output, create a new project and insert the method in a
new subclass of NSObject. The subclass should also contain an outlet called theText that
connects to an NSScrollView in a window. To invoke the method, instantiate an object of your new
subclass, make it the delegate of the File's Owner, and invoke fontDemo: in the
applicationDidBecomeActive: notification method. (Note that this is not the only way to do this.
[1])

When we wrote our original NeXTSTEP book back in 1992, we called this method
slowFontDemo: because it was very slow. Running on a 25-Mhz NeXTstation (CPU speed has

certainly gotten better, thanks to Moore's law), you could actually watch each line of text being
inserted into the text object and being reformatted to the specified size. It actually looked like
somebody was sitting down at the computer's keyboard, inserting the string "This is Helvetica in
size nn" into the text editor, selecting it with the mouse, and changing its size. When the method
ran, it was just plain ugly. But that was 10 years ago. If you build a "quickie" application that
invokes the fontDemo: method and run it today, the text will appear immediately. This is a
testament both to the significantly faster speed of today's computers and to the improved
algorithms used for rastering fonts.

Indeed, this short demonstration shows some of the significant advantages of Cocoa for handling
text:

● The fonts look great, because they're automatically scaled by Quartz to whatever size you
request.

● The text automatically wraps when you resize the window.
● The second time you run this demo it will run even faster, because the Window Server will

have cached bitmaps for the sizes of the fonts that you have specified.

Nevertheless, it's somewhat awkward to drive the NSText object like a word processor. For our
purposes, it's far better to simply load a file into the NSText object and have it display all of the
fonts at the same time. To do that, we need to learn about Rich Text.

12.1.2 Rich Text Syntax

The other way to manipulate text is by constructing the text you want ahead of time - with all of the
fonts and formatting commands already in place - and then reading it into the NSText object in a
single operation. One format for this data stream, called Rich Text, was developed by Microsoft in
the 1980s.

Rich Text looks a little like the codes used by TeX (pronounced "tech," as in the word "technique"),
the document typesetting system developed by Donald Knuth. Here's the "raw" Rich Text code that
will display the same fonts and text as the above demonstration:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl\f0\fswiss\fcharset77 Helvetica;}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww8320\viewh3920\viewkind0
\pard\tx1440\tx2880\tx4320\tx5760\tx7200\ql\qnatural

\f0\fs20 \cf0 This is Helvetica in size 10\

\fs30 This is Helvetica in size 15\

\fs40 This is Helvetica in size 20\

\fs50 This is Helvetica in size 25\

\fs60 This is Helvetica in size 30\

\fs70 This is Helvetica in size 35\

\fs20 \
}

An RTF file consists of unformatted text (e.g., "This is Helvetica"), control words (e.g.,
\fonttbl), control symbols (e.g., \~), and groups enclosed by curly braces ({}). Each control
word begins with a backslash (\) and consists of a string of letters followed by an optional numeric
argument. Each control symbol (none in our previous example) begins with a backslash and is
followed by exactly one nonalphanumeric character (e.g., \~ represents a nonbreaking space).
Curly braces have a special meaning: they define groups that support Rich Text graphics states. If
you change the state of a font within a graphics state, the change is lost when the state is closed.

Don't be alarmed if Rich Text seems a little complicated! There are really only a few Rich Text
controls that you need to be concerned about, and later in this chapter, we'll introduce an RTF
object that handles them for you automatically. Many of the RTF controls that are generated by the
previous examples can safely be ignored.

12.1.3 Using TextEdit to Explore RTF

The Mac OS X editor TextEdit is a Rich Text editor. If you open a new file with TextEdit, it will
be either a plain text file or an RTF file, depending on your TextEdit preference settings. If it's
plain text, choose TextEdit's Format Make Rich Text menu command to make it RTF. Then
save the "empty" file, and you'll get a file that contains the following information:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww9260\viewh7500\viewkind0
}

Try this in TextEdit, save your file, and then use the Unix cat (or vi, pico, etc.) command to
list the file's contents in a Terminal window. (The contents of your file may differ slightly,
depending on your defaults.) If you add three lines of text in TextEdit in Helvetica (probably your
default font), as shown in the window on the left in Figure 12-3, you'll end up with something like
this:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl\f0\fswiss\fcharset77 Helvetica;}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww9000\viewh7820\viewkind0
\pard\tx1440\tx2880\tx4320\tx5760\tx7200\ql\qnatural

\f0\fs24 \cf0 This is line 1\
This is line 2\
This is line 3\
}

Figure 12-3. TextEdit files to examine RTF codes for text, weights, and angles

When TextEdit reads a file, it checks the first five characters to see if they are "{\rtf". If they are,
TextEdit assumes that the file is in Rich Text Format.

Next, let's experiment with text weight and angle changes. The window on the right in Figure 12-3
produces the following RTF code:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl\f0\fswiss\fcharset77 Helvetica;\f1\fswiss\fcharset77
Helvetica-Bold;\f2\fswiss\fcharset77 Helvetica-Oblique;
\f3\fswiss\fcharset77 Helvetica-BoldOblique;}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww9620\viewh7500\viewkind0
\pard\tx1440\tx2880\tx4320\tx5760\tx7200\ql\qnatural

\f0\fs24 \cf0 This line is plain\

\f1\b This line is bold\

\f2\i\b0 This line is italic\

\f0\i0 \ul This line is underlined\

\f3\i\b \ulnone This line is bold italic\
}

Now let's try changing the font size. The window on the left in Figure 12-4 produces this RTF file:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl\f0\fswiss\fcharset77 Helvetica;}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww3560\viewh1820\viewkind0
\pard\tx1440\tx2880\tx4320\tx5760\tx7200\ql\qnatural

\f0\fs20 \cf0 This line is 10 point size\

\fs24 This line is 12 point size\

\fs28 This line is 14 point size\

\fs31 This line is 15.5 point size\
}

Figure 12-4. TextEdit files to examine RTF codes for sizes and fonts

Finally, let's try changing fonts. The window on the right in Figure 12-4 produces this RTF file:

{\rtf1\mac\ansicpg10000\cocoartf100
{\fonttbl\f0\fswiss\fcharset77 Helvetica;\f1\fnil\fcharset80
AppleGothic;\f2\fmodern\fcharset77 CourierNewPSMT;
\f3\froman\fcharset77 TimesNewRomanPSMT;\f4\fscript\fcharset77
BrushScriptMT;}
{\colortbl;\red255\green255\blue255;}
\margl1440\margr1440\vieww3500\viewh2020\viewkind0
\pard\tx1440\tx2880\tx4320\tx5760\tx7200\ql\qnatural

\f0\fs28 \cf0 This is Helvetica\

\f1 This is AppleGothic\

\f2 This is Courier New\

\f3 This is Time New Roman\

\f4\i This is Brush Script MT}

12.1.4 RTF Control Words and Symbols

Rich Text Format is a system for encoding various kinds of font information into a printable ASCII
character stream (only 7-bit ASCII characters are used, for portability). Using Rich Text control
words, you can encode font, size, and even margin changes in an application-independent fashion.
There are many Rich Text control words; Apple implements only a subset of them. This brief
discussion should be enough to get you going.

An RTF document begins with the character string "{\rtf0" or "{\rtf1" and ends with a closing
brace, "}". Inside the RTF document, you can have control words, which begin with a backslash
(\), and text. Control symbols are interpreted as commands, while text is displayed or printed.

You can have additional pairs of braces within an RTF file. Any formatting controls that you issue
within a pair of braces will be used but will not be printed when the Rich Text is printed. For
example, the following sequence in an RTF file:

This is {\b a test} of Rich Text.

prints like this:

This is a test of Rich Text.

Controls can appear anywhere in the text. For example, the strings:

This is \b a test \plain of Rich Text.

and:

This is \b a test \b0 of Rich Text.

print like this (the same as the string with braces above):

This is a test of Rich Text.

Normally, Rich Text ignores carriage returns. If you want a carriage return, precede it with a
backslash (\). If you want a backslash, type a double backslash (\\). These are examples of
control symbols.

You can define any number of fonts within an RTF document. Fonts are given numbers; you
usually define them within a set of braces at the beginning of the document. In our earlier example,
the following string defined a single font table, with the font \f0 being Helvetica:

{\fonttbl\f0\fswiss\fcharset77 Helvetica;}

Table 12-1 summarizes some common RTF controls.

Table 12-1. Common RTF controls

Control word Meaning

\rtf Declares a file to be a Rich Text file - you should use \rtf0 or \rtf1

Font control word Meaning

\fonttbl Begins definition of a font table

\f0 Selects font 0

\fswiss fontname Selects a sans-serif font fontname

\fmodern fontname Same as \fswiss

\froman fontname Selects a serif font fontname

\fnil fontname Selects another kind of font fontname

\fsnn Selects a font size - nn is in half points

Font control word Meaning

\plain Plain

\b Bold

\b0 No bold

\i Italic

\i0 No italic

\graynnn Gray; nnn= 0 for black, 1000 for white

\ul Underline

\ul0 No underline

\upnn Superscript nn half points

\dnnn Subscript nn half points

Formatting word Meaning

\xd5 l Left-justify text (quad left)

\xd5 c Center-justify text (quad center)

\xd5 r Right-justify text (quad right)

\tab Tabstop

\paperwnnnn Paper width in twips[2]

\paperhnnnn Paper height in twips

\marglnnn Left margin

\margrnnn Right margin

\finnnn First-line indent in twips

\linnnn Left indent in twips

\ulw Word underline

\uld Dotted underline

The RTF controls in Table 12-2, while useful, are not currently implemented by Apple.

Table 12-2. Unimplemented RTF controls

RTF control Meaning

\shad Shadow

\scaps Small caps

\caps All caps

\v Invisible text

\uldb Double underline

If you specify a font that isn't available on the machine you're using, you are likely to get Courier.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 12. Rich Text Format and NSText

12.2 Creating an RTF Class

Using Rich Text can be a pain: you have to remember far too many controls. There's got to be an easier
way! Of course there is - create an Objective-C class for building and managing Rich Text segments.
Following is the interface for such a class, a subclass of the root NSObject class, which works with the
NSTextView object:

#import <Cocoa/Cocoa.h>

@interface RTF:NSObject
{
 NSMutableData *data;
}
- (void)dealloc;
- (NSData *)data;
- (void)appendChar:(unsigned char)ch;
- (void)appendRTF:(NSString *)string;
- (void)appendString:(NSString *)string;
- (void)setBold:(BOOL)flag;
- (void)setJustify:(NSTextAlignment)mode;
- (void)setSize:(float)aSize;

@end

This time we'll describe these methods before we show how they are coded. The interface and method
descriptions are all you really need to know in order to use a class - we don't need to know the
implementation details. For example, we don't know how the AppKit classes are implemented, yet we've
been using them throughout the book!

Table 12-3 summarizes the instance methods declared in our new RTF class. The methods described in
this table that do not appear in RTF.h are overrides of methods in NSObject.

Table 12-3. Instance methods in the RTF class

Method Method description

(id)init
Initializes an RTF object, establishes a simple Rich Text header,
and returns the id of the newly created RTF object.

(void)dealloc Frees the RTF object and releases its internal storage.

(NSData *)data

Returns an NSData object for an RTF object. The RTF data is
automatically terminated by a closing brace character. You can
pass this object directly to an NSTextView object's
replaceCharactersInRange:withRTF: method. This method
doesn't actually return the internal NSData buffer; instead, it
returns a copy.

(void)appendChar:(unsigned char)
ch

Appends a character to the internal NSData object.

(void)appendRTF:(NSString *)
string

Appends a Rich Text string to the RTF object stream. No
translation is performed on the string.

appendString:(NSString *)string
Appends an ASCII text string to the RTF object stream. Special
characters, such as newline and backslash, are automatically
quoted.

setBold:(BOOL)flag
If flag is YES, the following text is appended in bold. If flag is
NO, the following text is not appended in bold.

setJustify:(NSTextAlignment)mode
Sets the justification mode of the text that is appended to the
RTF object. Cocoa's justification modes are defined in the
header file NSText.h.

Following is the implementation for our RTF class:

// RTF.m:

#import "RTF.h"

@implementation RTF
- (id)init
{
 NSString *header =
 @"{\\rtf1\\mac{\\fonttbl\\f0\\fswiss Helvetica;}\\f0\\fs24 ";

 [super init];
 data = [NSMutableData dataWithData:
 [header dataUsingEncoding:NSASCIIStringEncoding]];
 [data retain];
 return self;
}

- (void)dealloc
{

 [data release];
 return [super dealloc];
}

// Create a new NSData object that has a termination brace.
// Cocoa's NSText won't display without the brace.
- (NSData *)data
{
 NSMutableData *data2 = [[NSMutableData alloc]
 initWithData:data];
 [data2 appendBytes:"}" length:1];
 return data2;
}

// appendChar: appends an arbitrary character to the data
- (void)appendChar:(unsigned char)ch
{
 [data appendBytes:&ch length:1];
}

// appendRTF: appends an arbitrary RTF string to the RTF object
- (void)appendRTF:(NSString *)string
{
 [data appendData: [string dataUsingEncoding:NSASCIIStringEncoding]];
}

// appendString: appends an ASCII text string,
// all of the special characters in the text
- (void)appendString:(NSString *)string
{
 int i;

 for (i=0;i<[string length];i++) {
 unichar c = [string characterAtIndex:i];

 switch(c) {
 case '\n': // escape special characters
 case '{':
 case '}':
 case '\\':
 [self appendChar:'\\'];
 break;
 default:
 break;
 }
 [self appendChar:c];
 }
}

- (void)setBold:(BOOL)flag
{
 [self appendRTF: flag ? @"\\b " : @"\\b0 "];

}

- (void)setSize:(float)aSize
{
 [self appendRTF:[NSString stringWithFormat:@"\\fs%d",(int)aSize*2]];
}

- (void)setJustify:(NSTextAlignment)mode
{
 switch(mode) {
 case NSNaturalTextAlignment:
 case NSLeftTextAlignment:
 case NSJustifiedTextAlignment:
 [self appendRTF:@"\\ql\n"];
 break;
 case NSCenterTextAlignment:
 [self appendRTF:@"\\qc\n"];
 break;
 case NSRightTextAlignment:
 [self appendRTF:@"\\qr\n"];
 break;
 }
}

@end

This class makes use of the NSMutableData and NSString classes, and of Cocoa's Unicode-based system
for converting between the two. If you are not familiar with these classes, you may find it useful to review
their documentation at this time.

Notice that, before the NSData is returned, a copy is made and the closing brace (}) required by the Rich
Text standard is appended. The closing brace is added to the copy, which allows the RTF object itself to be
used again should the caller wish to add more information. (PaperController won't, but you might in
another program that you write.) The object's user doesn't have any way of knowing that this is done, and
indeed, as long as the RTF class works properly for the user, the user doesn't need to know. This is another
example of why it is better to use accessor methods rather than using Objective-C's @public feature and
directly accessing an object's instance variables.

NSAttributedString: An Even Better RTF Class

If you do a lot of work with Rich Text, you will quickly exceed the capabilities of the RTF
class presented in this chapter. Rather than continuing to extend the RTF class, you should
investigate the Cocoa attributed string classes, NSAttributedString and
NSMutableAttributedString. Header files for these classes appear in both the /Foundation
and /AppKit directories.

The attributed string classes allow you to effectively and easily manage text strings with
associated attributes. Many classes in the Application Kit can directly handle attributed strings.
If you are using an NSControl, NSCell, NSTextField, or NSTextView, you may find it easier
to build an attributed string than to create an RTF string.

The "attributes" used by the NSAttributedString system are represented as name/value pairs
that are stored in NSDictionary objects. Attributes can apply to all of a string or simply to a
subset of the string. Some of the attributes that you may use include:

NSFontAttributeName

The font of the attributed string (the default is Helvetica 12)

NSParagraphStyleAttributeName

The paragraph style of the attributed string

NSForegroundColorAttributeName, NSBackgroundColorAttributeName

The foreground and background colors of the text

NSBaselineOffsetAttributeName

The offset from the baseline, in points

We use RTF, rather than NSAttributedStrings, in this chapter because RTF is a standard that
works across platforms. If you wish to create multiple-font documents that can be accessed on
other platforms, you should understand how RTF works. This example also allows us to show
the mechanics of creating a helper class that does not directly correspond to any objects on the
screen.

Attributed strings are discussed in greater detail in Chapter 14.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 12. Rich Text Format and NSText

12.3 Integrating Our RTF Class into MathPaper

Now that we have defined the RTF class, let's integrate it into the MathPaper application to get the promised
fonts and formatting:

1. Open MathPaper.pbproj in Project Builder and choose File New File to create a new file
called RTF.h.

2. Select Empty File in the New File Assistant pane and then click Next.

3. Enter "RTF.h" in the File Name field, make sure the MathPaper target is checked, and then click Finish.

4. Now enter the RTF class interface code, as provided in the previous section, into RTF.h.

5. Similarly, create another file called RTF.m and insert the RTF class implementation code (also
provided earlier) into it.

6. If they aren't there already, drag the RTF.h and RTF.m files into the Classes group in PB's Groups &
Files pane.

Another way to perform the six steps presented in this section is to first create the
RTF.h and RTF.m class files outside of PB, using another editor (e.g., TextEdit or
GNU Emacs). Save these two files in the ~/MathPaper folder, and then drag
their file icons from the Finder and drop them into the Classes group in PB's Groups
& Files pane.

Now that our new RTF class has been added to the project, we proceed to make the necessary changes in the
PaperController class.

7. Insert the following directive after the other #import statement near the top of PaperController.
m:

#import "RTF.h"

8. Insert the new appendRTFData: method declaration shown here into the existing NSTextView
(MathPaper) category interface:

@interface NSTextView(MathPaper)
- (void)appendString:(NSString *)str;
- (void)appendRTFData:(NSData *)str;
@end

9. Insert the new appendRTFData: method implementation shown here into the NSTextView
(MathPaper) category implementation:

- (void)appendRTFData:(NSData *)data
{
 int len = [[self string] length];
 [self replaceCharactersInRange:NSMakeRange(len,0) withRTF:data];
}

10. Replace the gotData: method implementation in PaperController.m with the new
implementation shown here:

#define USE_RTF
- (void)gotData:(NSNotification *)not
{
 NSData *data;
 NSString *str;
#ifdef USE_RTF
 RTF *rtf = [[[RTF alloc] init] autorelease];
#endif

 data = [[not userInfo]
 objectForKey:NSFileHandleNotificationDataItem];
 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 [str autorelease]; /* Automatically release when done */

 // Add the data to the end of the text object
#ifdef USE_RTF
 [rtf setBold:YES];
 [rtf setJustify:NSRightTextAlignment];
 [rtf setSize:20];
 [rtf appendString:str];
 [rtf setBold:NO];
 [rtf setJustify:NSLeftTextAlignment];
 [rtf setSize:12];
 [rtf appendString:@"--------------------\n"];
 [theText appendRTFData:[rtf data]];
#else
 [theText appendString:str];
 [theText appendString:@"--------------------\n"];
#endif
 // Now scroll to the bottom
 [theText scrollRangeToVisible:
 NSMakeRange([[theText textStorage] length], 0)];
 // Register to get the notification again
 [fromEvaluator readInBackgroundAndNotify];
 // Finally, allow the user to make any changes to the text
 [theText setEditable:YES];
}

Notice that we used the USE_RTF conditional compilation technique so that RTF can be turned off when
desired without doing a lot of editing. This is a useful technique when you are developing code. Second, notice
that we alloc, init, and autorelease the RTF string all in one place. This assures that the string will be properly
freed when we are done using it; we don't have to bother with a separate release message.

11. Save all pertinent files, and build and run your MathPaper project. The RTF object should behave as
shown in the screen shot on the left in the earlier Figure 12-1.

12. Quit MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 12. Rich Text Format and NSText

12.4 Summary

In this chapter, we learned a significant amount about Rich Text Format, which helped us
format the mathematical output in our MathPaper windows. We also learned more about
the NSText and NSTextView classes. In particular, we learned how to exert precise control
over the contents of an NSTextView object by using RTF to encode font, size, and
justification information into a stream before copying the information into the NSTextView
object.

In the next chapter, we'll see how to use methods built into the NSText class to save the
contents of a MathPaper window into a file. We'll also learn how to implement the opening
and printing of MathPaper documents (files). Finally, we'll learn how to catch the message
that Window Manager generates when a user double-clicks a file icon in the Finder and
how to open that file in our MathPaper application.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 12. Rich Text Format and NSText

12.5 Exercises

1. The font size of the input text is small for an application such as MathPaper. What
changes need to be made in MathPaper to increase the font size of all mathematical
expressions that are entered by the user?

2. Calculate sin(pi) using this chapter's version of MathPaper. Does anything
unusual happen? If so, why, and what can be done about it?

3. Extend the RTF class in this chapter so that it implements a larger subset of the
Rich Text Format specification. To find the RTF specification, search http://msdn.
microsoft.com. Use your extended class to support additional fonts and other
formatting features in MathPaper windows.

4. Investigate the use of the Format and Font menus in Interface Builder to support
additional formatting in MathPaper. Can they be used? If so, how? Implement your
ideas.

5. Reimplement the RTF class so that it uses an NSMutableAttributedString rather
than an NSMutableData object. Instead of building your own RTF, rely on the
machinery inside the NSMutableAttributedString class.

6. Investigate the possibility of rewriting MathPaper so that it still supports RTF but
doesn't require a helper class at all. If possible, do it! First you must carefully read
Cocoa's documentation on NSText, NSTextView, and related AppKit classes. Why
do you think we decided to implement MathPaper with a helper class?

http://msdn.microsoft.com/
http://msdn.microsoft.com/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 13. Saving, Loading, and Printing

In the previous chapter we saw how the contents of a text object can be translated into a
Rich Text stream of characters. In this chapter, we'll see how to take that stream and save it
into a file; we'll also see how to load one of those files and place its contents in a new
window. Finally, we'll learn about printing. All of these tasks will be made dramatically
easier by using the Cocoa Application Kit framework.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.1 Data Management with NSDocument

At this point, our MathPaper application does a great job with math, fonts, and handling multiple windows.
However, it's missing a lot of basic functionality, such as:

● Saving the contents of a window into a file
● Loading a saved file, so that you can continue calculating where you left off
● Marking an edited window with the "unsaved" close button with a dot inside so that you know it has

been edited (the "saved" close button has an X inside:)
● Alerting a user who tries to close an edited window without first saving the edited file
● Printing the contents of a window
● Graying out menu items that are not appropriate in a given context (e.g., the Save menu item when

there are no open documents)

Writing the code for document saving and loading can be quite an ordeal in some computing platforms.
However, it's easy in Cocoa because most of the required code is already part of the multiple-document
framework.

13.1.1 Memory to Disk and Back

When you save a document to a file on your computer's hard drive, you are making a representation of a part
of the computer's memory and archiving that representation in a way that can be restored later. In some
cases, the easiest representation is a byte-for-byte copy of the computer's memory. Applications that use this
technique are simply storing a memory snapshot on disk.

Other applications take a more intelligent approach to archiving information. For example, a vector-graphics
drawing program stores the endpoints of a line rather than the positions of all of the individual pixels that
make up the line. Also, an object-oriented drawing program might archive a document to disk by telling its
document object to write a stream of bytes to the disk containing the values in all of the instance variables.
This command would then be recursively applied to all of the objects that the document contains. In this
manner, all of the text, images, lines, and other information that can be referenced from the document would
be written out to disk.

There are other ways that applications can save documents to disk as well. Microsoft Word, for instance, has
a feature called fast saves. If you open a large document with Word, make a few changes, and then try to
save it, Word can simply append the change journal to the end of the first document, rather than making a
whole new copy. Fast saves can be a real timesaver, but they have the disadvantage that the unmodified text
remains in the document - which can produce embarrassing situations at times! Early versions of Word were
also somewhat buggy, and occasionally fast saves caused document files to become corrupted.

13.1.2 Rethinking MathDocument and PaperController

Let's review where we are with our MathPaper program. Our MathDocument class is a subclass of
NSDocument, and our PaperController class is a subclass of NSWindowController. There is also a single
NSDocumentController object in our program that's mostly invisible to the programmer, even though it has
overall control of the multiple-document architecture and does a lot for both the interface and the program.
For example, this NSDocumentController object automatically creates a new MathDocument object when

MathPaper launches and initializes another new MathDocument object every time a user chooses File
New from MathPaper's menu. NSDocumentController also maintains a list of NSDocument (i.e.,
MathDocument) objects and all of their NSWindowControllers. In addition, this object manages the on-
screen document windows and much of the main menu.

MathDocument's makeWindowControllers method is automatically invoked at MathPaper launch time and
when File New is chosen. Our override of makeWindowControllers in the previous chapter creates a
new PaperController object, unarchives PaperWindow.nib with the new PaperController object as its
owner, and adds the new object to the list of window controllers.

Note that NSDocumentController implements the saveAllDocuments:, newDocument:, and
openDocument: action methods associated with the File menu commands. These methods are all connected
to the First Responder icon, as you can see in Interface Builder.

Our MathDocument class doesn't do much yet. At this point, it responds to makeWindowControllers and
windowNibName messages but otherwise sits dormant. All of the controls, the state information, and the
Evaluator hookup for each window are kept in the associated copy of PaperController. What is the state
information? For each MathPaper window, the following information is relevant:

● The current location and size of that MathPaper window (called the window frame)
● The window's history - that is, the calculations that have been displayed

To this end, we need to redesign the way that data is kept in the application. For each MathPaper window,
the MathDocument object will be responsible for keeping the "official" copy of the data, and the
PaperController object will be responsible for keeping the "working copy" - that is, the copy the user is
modifying.

Our changes to the MathPaper class will consist of adding two instance variables and five accessor methods.
The two instance variables, frame and history, will keep track of the MathDocument's window frame
and its math-expression history. The accessor methods allow us to set and inspect these variables. Later,
we'll also modify the PaperController class so that it takes its data from the MathDocument class.

We'll also add a new initializer to the MathDocument class that will initialize the history variable to a
default value. In this case, we'll choose a default that improves the usability of the MathPaper application by
adding a line of instruction on how to use the application.

1. Back in Project Builder, insert the lines shown here in bold into the MathDocument.h class
interface file:

#import <Cocoa/Cocoa.h>

@interface MathDocument : NSDocument
{
 NSRect frame;
 NSMutableData *history;
}
-(NSData *)history;
-(void)setHistory:(NSData *)theHistory;
-(NSRect)frame;
-(void)setFrame:(NSRect)aFrame;

-(BOOL)hasFrame;
@end

With the exception of hasFrame, the names of these five methods indicate what they do. The hasFrame
method tells the invoking object whether the frame instance variable has been set. If it hasn't, it still reads
the "factory default" value - that is, all zeros.

2. Insert the #import directive and add the methods shown here in bold to the MathDocument.m
class implementation file:

#import "MathDocument.h"
#import "PaperController.h"

@implementation MathDocument

...
-(NSData *)history
{
 return history;
}

-(void)setHistory:(NSData *)theHistory
{
 [history setData:theHistory];
}

-(NSRect)frame
{
 return frame;
}

-(void)setFrame:(NSRect)aFrame
{
 frame = aFrame;
}

-(BOOL)hasFrame
{
 return (frame.size.height!=0 && frame.size.width!=0);
}
...

As you can see, these methods are all pretty straightforward. The history and frame methods return their
respective instance variables, while the setHistory: and setFrame: methods set them. The hasFrame
method returns TRUE if the frame has been set (that is, if the size of the frame is nonzero) and FALSE if it
has not been set.

We also need to create a designated initializer and deallocator for the MathDocument class. The initializer
will create the initial NSMutableData object for the MathPaper history instance variable and fill
history with its initial content. The deallocator will release the storage that has been allocated when it's
no longer needed.

3. Add the init and dealloc methods shown here in bold to the MathDocument.m class
implementation file:

// Designated initializer; create the empty document
- (init)
{
 RTF *rtf = [[[RTF alloc] init] autorelease];
 [super init];
 [rtf setBold:TRUE];
 [rtf setSize:10.0];
 [rtf appendString:@"Enter a math expression and hit return:"];
 [rtf setSize:12.0];
 [rtf appendString:@"\n"];
 history = [[NSMutableData alloc] initWithData:[rtf data]];
 return self;
}

-(void)dealloc
{
 [history release];
 [super dealloc];
}

Finally, we want to modify the PaperController's windowDidLoad method so that it reads the value for the
window's frame and history after the PaperWindow.nib file is loaded. With the code that we've
written, history will always be equal to the default value and frame will never be set. That's okay for
now; we'll set the frame value in the next part of this chapter.

4. Insert the lines shown here in bold into the windowDidLoad method in the PaperController.
m file:

#import PaperController.h;
#import RTF.h;
#import MathDocument.h;

...
- (void)windowDidLoad
{
 NSString *path;
 MathDocument *doc;

 [super windowDidLoad];
 [[self window] makeFirstResponder:theText];

 // Initialize with document
 doc = [self document];
 [theText replaceCharactersInRange:NSMakeRange(0,0)
 withRTF:[doc history]];
 if ([doc hasFrame]) {
 [[self window] setFrame:[doc frame] display:YES];
 }

 path = [[NSBundle mainBundle]
 pathForResource:@"Evaluator"
 ofType:@""];

 toPipe = [NSPipe pipe]; // NSTask below will retain
 fromPipe = [NSPipe pipe]; // NSTask below will retain

 toEvaluator = [toPipe fileHandleForWriting];
 fromEvaluator = [fromPipe fileHandleForReading];

 evaluator = [[NSTask alloc] init];
 [evaluator setLaunchPath:path];

 [evaluator setStandardOutput:fromPipe];
 [evaluator setStandardInput:toPipe];
 [evaluator launch];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(gotData:)
 name:NSFileHandleReadCompletionNotification
 object:fromEvaluator];

 [fromEvaluator readInBackgroundAndNotify];
}

5. Build and run the MathPaper application. Type Command-N a few times to create a few windows.
Each window should contain the brief instructions that we'll now create in MathPaper's designated
initializer, init. (See Figure 13-1.)

Figure 13-1. MathPaper with prompt output from the designated initializer method

Many simple document-based applications don't bother with separate subclasses of both the NSDocument
and NSWindowController classes. Instead, they simply put all of the document-management and window-
control functionality inside the NSDocument subclass. This approach works fine until you want to display

two different kinds of document windows - for example, plain text and RTF text windows in TextEdit, or
two windows on a single document.

Because most Cocoa programmers will eventually need to subclass both the NSWindowController and
NSDocument classes, we decided to simply start that way in our demonstration program. We hope it hasn't
been too confusing!

In the next section, we'll build upon this framework by having Cocoa save the contents and the position of
the window into a file.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.2 Saving to a File

Before we can save the contents of a MathPaper window into a file, we first need to know what kind of file our
application will create. Specifically, we need to know the file's HFS creator code, its HFS type code, and its file
extension.

Creator codes are used so that when you double-click on a filename in the Finder, Cocoa knows to open the
correct application. Creator codes are also used to locate applications on the computer's hard disk. You may
remember that, in Section 10.4.5, we were assigned by Apple a creator code for the MathPaper application. That
creator code was MATP.

Because a single application can create many different kinds of files, and because multiple applications are
sometimes able to read the same file, document files stored on HFS filesystems also have a type code. Like creator
codes, file type codes are 4-byte strings or 32-bit quantities. In many cases, the file type is the same as the file's
extension in the world of Windows and Unix: GIF and JPEG are used for image files, for example.

In addition to creator codes, Mac OS X uses file extensions to match up applications and their document files. A
file extension is the set of letters that come after the last period (dot) in a file's name. Unlike the Mac OS 9 Finder,
the Mac OS X Finder makes it somewhat difficult for the user to accidentally change a file extension. It does this
by generally hiding file extensions and by warning the user before an extension is changed. Mac OS relies on file
extensions more and more as time goes on, which generally improves interoperability with other platforms that do
not have creator and type codes.

Many of the commonly used extensions and their meanings are listed in Table 13-1. These are some of the
standard extensions used by Mac OS X.

Table 13-1. Common Mac OS X file extensions

File extension File type

.a Unix library file

.app Directory containing an application

.c C-language source file

.eps Encapsulated PostScript file

.gif Graphics Interchange Format file

.h C (or Objective-C) header file

.jpeg or .jpg Joint Photographic Expert's Group format file

.l or .lex lex source file

.lproj Directory containing language-specific nibs

.m Objective-C language source file

.mbox Directory containing a Mail.app mailbox

.midi File containing binary MIDI data

.mp3 MPEG2 Level 3 audio file

.nib IB file

.o Unix object code file

.pdf Portable Document Format file

.pbproj Project file for use with PB

.rtf Rich Text Format file

.rtfd Rich Text Format directory containing .rtf and image files such as .tiff and .eps

.s File containing assembler source

.tar Tape Archive format file (see the Unix manpage for tar)

.tiff or .tif Tagged Image File Format file

.txt Plain text file

.uu Uuencoded file

.y yacc source file

.Z File that has been compressed

For our application, we'll use the string "MATP" as the MathPaper file type and the extension .matp for
MathPaper document files. Now we'll set up icons.

13.2.1 Icons for MathPaper

1. Create a high-resolution icon for MathPaper document files and save it in your MathPaper folder with the
name papericon.tiff.

The icon should be saved in the following four resolutions: 16 x 16, 32 x 32, 48 x 48, and 128 x 128 pixels. If you
want to make only one icon, make the 128 x 128 icon and let the system scale the others. We came up with the
icon shown here. (A quick way to create an icon is to use the Grab application to grab a small screen-shot selection
and save it in the TIFF format. Grab is located in the /Applications/Utilities folder.)

2. In IconComposer, create a PaperIcon.icns file from your icon files. Refer to Section 6.3.2 for details
on using the IconComposer program.

3. Open MathPaper.pbproj in PB.

4. Choose PB's Project Add Files menu command and add the PaperIcon.icns file to the
Resources group in the Groups & Files pane (or simply drag the file from the Finder and drop it in the
Resources group in PB). Make sure that you add PaperIcon.icns to the MathPaper target.

5. Select the Targets vertical tab, then click on the MathPaper target.

6. Click on the newly visible Application Settings tab, scroll down to the Document Types section, and select
the MathPaper document type.

7. Enter PaperIcon.icns in the Icon file field and click the Change (not Add) button. The pertinent part
of PB's main window can be seen in Figure 13-2.

Figure 13-2. Adding the PaperIcon.icns icon file to MathPaper's Application settings

At this point, PB knows that MathPaper can handle only one kind of document - a MathPaper document that has
the extension .matp and the HFS type code "MATP". MathPaper is an Editor for this file type, meaning that it
can both read and write these files.

13.2.2 Synchronizing PaperController with MathDocument

Saving the contents of a window means writing all of the states associated with the window into a file, so that we
can reconstruct the window's current state as closely as possible when it's reloaded. In the case of a MathPaper
window, not many states need to be saved. Because the Evaluator back end doesn't retain state between launches,
the only information that we need to save in a MathPaper document file is:

● The current location of the window (the frame)
● The window's history

This is precisely the information that we decided to store in the MathDocument instance variables - how
convenient! To implement file saving, all we need to do is to write the code to migrate this information from each
window's PaperController object to its matching MathDocument object, then arrange for the pertinent instance
variables to be saved in a file on disk.

In Step 4 in the previous section, we modified the windowDidLoad method in PaperController.h so that
the MathPaper window's initial frame and the contents of the NSTextView would be taken from the
MathDocument object. To save a MathPaper document to a file, we need to perform the reverse operation - we
need to copy the contents of the NSTextView object and the window's frame back into the MathDocument
instance variables. That's what the new PaperController synchronizeData method shown below will do.

8. Insert the new synchronizeData method declaration shown here in bold into the PaperController.h
file:

#import <Cocoa/Cocoa.h>

@interface PaperController : NSWindowController
{
 NSTask *evaluator;
 NSPipe *toPipe;
 NSPipe *fromPipe;
 NSFileHandle *toEvaluator;
 NSFileHandle *fromEvaluator;
 IBOutlet NSTextView *theText;
}
- (void)synchronizeData;
@end

9. Add the synchronizeData method implementation to the PaperController.m file:

- (void)synchronizeData
{
 NSRange allRange = NSMakeRange(0,[[theText textStorage] length]);
 MathDocument *doc = [self document];
 [doc setHistory:[theText RTFFromRange:allRange]];
 [doc setFrame:[[self window] frame]];
}

...
@end

This method gets a copy of the RTF data in the NSTextView object in an NSData object. The MathDocument's
history object is then set to be equal to this RTF data. Following that, the MathDocument's setFrame: method is
invoked to set the frame of the PaperController's window.

13.2.3 Archiving MathPaper Documents

Merely copying the data out of the PaperController's objects and into the MathDocument is not sufficient; to save
this data on the hard disk, we need to create a method that will turn this information into a byte stream.

To create that byte stream, we will use Cocoa's NSCoder, NSArchiver, and NSUnarchiver classes. These classes
are responsible for archiving and restoring data. With these classes, you can archive an object to a byte stream that
is stored in an NSData object with a single method invocation, as follows:

NSData *theData = [NSArchiver archiveDataWithRootObject:anObject];

After this message is sent, the NSArchiver class creates an NSCoder instance that is responsible for doing the
actual encoding. The NSCoder instance then invokes a version of the encodeWithCoder: method that we create,
passing a pointer to itself as the argument.

Thus, to operate with the NSCoder system, our MathDocument class needs to implement the encodeWithCoder:
method. This method is quite simple; it usually consists of a message to the coder object argument for each
instance variable that needs to be archived. For example, if you had a class with a single instance variable called
frame, your encodeWithCoder: method would look like this:

-(void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeRect:frame];
}

The real power of the NSCoder system comes when you are archiving complicated objects that contain references
to many other objects. Each object that is archived automatically archives all of its subobjects, resulting in an
entire tree or graph of objects being archived in the NSData object. The system transparently handles objects that
are referenced in more than one location, as well as circular references.

If you casually read the NSCoder documentation or the NSCoder.h include file, you may feel that the NSCoder
system is powerful but somewhat difficult to use. That's because the NSCoder class just defines the base methods
that are used for writing out raw data, byte arrays, and objects. There are many higher-level NSCoder methods that
are defined as category methods in other include files, such as NSGeometry.h. Table 13-2 contains a list of
many of the NSCoder methods that you may use in creating your applications.

Table 13-2. Common methods in the NSCoder class

Method Purpose

- (void)encodeObject:(id)object Encodes an object

- (void)encodePropertyList:(id)aPropertyList Encodes a property list

- (void)encodePoint:(NSPoint)aPoint
Encodes an NSPoint
structure

- (void)encodeSize:(NSSize)aSize
Encodes an NSSize
structure

- (void)encodeRect:(NSRect)aRect
Encodes an NSRect
structure

- (void)encodeDataObject:(NSData *)data Encodes an NSData object

- (void)encodeValuesOfObjCTypes:@encode(int)i Encodes an integer

- (void)encodeValuesOfObjCTypes:@encode(float)f
Encodes a floating-point
value

- (void)encodeArrayOfObjcCTypes:@encode(type) count:(unsigned)aCount at:
(void *)addr

Encodes an array of type
type

To use the NSCoder class, we will create an encodeWithCoder: method for MathDocument:

10. Add the encodeWithCoder: method shown here in bold to the MathDocument.m file:

#import "MathDocument.h"
#import "PaperController.h"
#import "RTF.h"

@implementation MathDocument
...
- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeRect:frame];
 [coder encodeObject:history];
}
...
@end

Many implementations of the encodeWithCoder: method will invoke their superclass's encodeWithCoder:
method (e.g., [super encodeWithCoder:coder]) so that the instance variables of the superclass are automatically
encoded. This is not the correct approach with subclasses of the NSDocument class, however, because we do not
actually want the instance variables of the NSDocument class stored in the byte stream. (Another reason not to
send the [super encodeWithCoder:coder] message is that the NSDocument class does not implement the
encodeWithCoder: method, so calling the super method would result in an error.)

13.2.4 Writing the Save Methods

We have created one method for copying the state of each MathPaper window into the MathDocument object and
another method for copying these instance variables into an NSData object. All that remains for us to do to
implement file saving is to display the appropriate Save panel when the user chooses File Save (or types
Command-S). The Save panel will prompt for a filename, get the filename, get the NSData for the instance
variables, and put all of this information into a file. Fortunately, we need to write only five lines of code to
implement this functionality; Cocoa gives almost all of it to us for free.

To understand how all this happens, we'll first focus on the First Responder icon that we first discussed back in
Chapter 3. We've already discussed the First Responder in the context of the File menu items. Now we're going to
find out what it means.

The First Responder icon in the Nib File window is a placeholder for the application's current first responder; that
is, the object that will be the first to try to respond to keyboard events and menu commands such as Cut, Copy, and
Paste. Any message sent to the First Responder icon is sent in order to each of the following objects, until an
object is found that can receive the message and respond with a value other than nil:

● The key window
● The key window's delegate
● The key window's NSWindowController (if you are using the document application framework)
● The key window's NSDocument
● The application's main window
● The application's main window's delegate
● The main window's NSWindowController
● The main window's NSDocument
● The application's NSApplication object
● The application's NSApplication object's delegate

● The application's NSDocumentController

If you open MathPaper's MainMenu.nib file in IB and choose the File Save menu item, you will see that it
sends the saveDocument: action message to the First Responder icon, as shown in Figure 13-3. (Note that we saw
a similar premade connection from File New in Chapter 10.)

Figure 13-3. MathPaper's File Save connection to the First Responder in IB

Thus, when a user chooses the File Save menu command in a running MathPaper program, the
saveDocument: message will be sent to the MathDocument object that controls the key (active) window. Cocoa
implements the saveDocument: method in the NSDocument class. The behavior of this method depends on
whether or not a filename has been assigned to the document. If a filename has not been assigned, the
NSDocument class runs a modal Save panel to get a document and type. (A modal Save panel requires user action
and must be dismissed before anything else can be done in the application.) After the user enters an appropriate
name, etc., the document is saved and its "edited" status is cleared.

After the NSDocument class gets the filename, it needs to create an NSData object to contain the archived instance
variables of your class. This NSData then needs to be written into a file on disk. The NSDocument architecture
gives you not one, but three different ways for providing this information in your subclass, as well as for reading
back the files from disk after they are created:

● If you simply want to be able to save a document to disk and load it back in, all you need to do in your
NSDocument subclass is to override the following two methods:

(NSData *)dataRepresentationOfType:(NSString *)type;

This method returns an NSData object that contains a sequence of bytes that corresponds to the
document currently in memory. Some documents can be stored as multiple types, so you should
check the NSString argument and provide the requested type.

(BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)type;

This method is passed an NSData object that contains the sequence of bytes that you should load,
and an NSString that contains the document type that you need to read in. Your method should
load the NSData object into the NSDocument's memory and return TRUE if it's successful or

FALSE if it fails. The NSString argument is useful if your application knows how to load more
than one kind of file.

● For some kinds of applications, it is easier to store a document in a file wrapper that consists of a folder
and multiple files. If you want to store the contents of your document in a file wrapper, override these two
methods:

(NSFileWrapper *)fileWrapperRepresentationOfType:(NSString *)type;

This method should return an NSFileWrapper object that corresponds to the document's contents.

(BOOL)loadFileWrapperRepresentation:(NSFileWrapper *)wrapper ofType:(NSString *)type;

This method loads the current document from the NSFileWrapper wrapper.

● If you need still more control over the saving and loading of your documents, you can override these four
methods:

(BOOL)writeToFile:(NSString *)fileName ofType:(NSString *)type;
(BOOL)writeToURL:(NSURL *)url ofType:(NSString *)type;
(BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type;
(BOOL)readFromURL:(NSURL *)url ofType:(NSString *)type;

The NSDocument class contains additional methods that you can use to control whether or not backup files are
preserved, if you need to access the previous version of a file when you are saving a new version (for example, if
the entire document cannot fit in memory) or if your "revert" action needs to have some sort of specific behavior.
As with all classes discussed in this book, you can consult the Cocoa documentation for a further explanation of
the methods mentioned here, as well as additional methods that we have not described.

To help implement file saving in MathPaper, we will override NSDocument's dataRepresentationOfType:
method in our MathDocument subclass. Our implementation will get a list of all the PaperController objects
associated with the current MathDocument document (object), send each of those objects a synchronizeData
message, and then return the NSData object that results when an NSArchiver is asked to archive the
MathDocument object.

11. Insert the new code shown here in bold into the dataRepresentationOfType: method in the
MathDocument.m file:

- (NSData *)dataRepresentationOfType:(NSString *)aType
{
 if ([aType isEqualToString:@"MathPaper"]) {

 // Ask our windows to synchronize their data
 [[self windowControllers]
 makeObjectsPerformSelector:@selector(synchronizeData)];

 // Encode the data
 return [NSArchiver archivedDataWithRootObject:self];
 }
 return nil; // Cannot encode
}

The "list of all the PaperControllers" approach may seem like overkill, because we know that our application has

only one PaperController per MathDocument window. Indeed, the second statement could have been written like
this:

...
 // Ask our one window to synchronize its data
 [[[self windowControllers] objectAtIndex:0]] synchronizeData];
...

But because the NSDocument architecture returns an NSArray * reference when we send it the
windowControllers message, it's actually easier to write the generalized code that sends the synchronizeData
message to every object in the NSArray (even though we know that only a single element is there). With this code,
if a second NSWindowController instance is ever added to the MathPaper application - for example, if we should
want to have two windows for every MathDocument - we'll be prepared. See Section 13.7 at the end of the chapter
for more on this topic.

13.2.5 Testing the Save Features

After you've made the changes, it's time to test them.

12. Build and run MathPaper. Save all pertinent files before building.

13. Create four MathPaper windows and drag them to the four corners of your screen.

14. Type some equations in each of the four windows.

15. Choose the MathPaper Save (or Save As) menu command for each window. Because you haven't
given this window a filename yet, both functions do the same thing - bring up the Save panel. Note that the
application icon automatically appears in the Save panel.

16. We'll save each window with a name such as "upper-left", "lower-left", "upper-right", and "lower-right", as
shown in Figure 13-4. If necessary, click Home in the Save panel to open your Home directory. Then type
a filename and click OK (or hit Return) to save the file in your Home directory. The document icon will
appear above your chosen filename in your File Viewer, as shown in Figure 13-5.

17. Quit MathPaper.

Note that each time you save a file, the title of the window bar changes. If you look closely, you'll also see that
each window has the MathPaper document icon in its title bar, as shown in Figure 13-4.

Figure 13-4. Saving several MathPaper windows

The document icon that you've created should also show up in the Finder, as it does in Figure 13-5. If the
document icon does not show up, log out of your computer and log back in - the Mac OS X Finder doesn't always
recognize new icons when they are manufactured by applications under development. If that doesn't work, try
putting a copy of the MathPaper.app application icon in your Dock.

The NSDocument architecture automatically adds the file extension .matp to the documents that we create. You
can use the Finder's Show Info panel (Command-I) to control whether the extension is shown or displayed on a
file-by-file basis.

Figure 13-5. The MathPaper document icons should show up in the Finder

13.2.6 Advanced Save Panel Options

There may be circumstances in which the Save panel that is produced by the NSDocument architecture is not
sufficient for what you wish to do. For example, you may wish to have a radio button or a checkbox on the Save
panel. Cocoa makes it easy to customize both Save panels and Open panels with your own accessory views. We

won't need such customization here, but this is a good place to provide an overview of how it's done.

When the NSDocument class (or your subclass) attempts to invoke saveDocument: and no filename is specified,
or when the user asks to do a Save As or a Save To operation, the following methods in your NSDocument
subclass are called, in this order:

❍ (void)runModalSavePanelForSaveOperation:

■ (NSSaveOperationType)saveOperation

■ delegate:(id)delegate

■ didSaveSelector:(SEL)didSaveSelector

■ contextInfo:(void *)contextInfo

ii. (BOOL)prepareSavePanel:(NSSavePanel *)savePanel

❍ (void)saveToFile:(NSString *)fileName

■ saveOperation:(NSSaveOperationType)saveOperation

■ delegate:(id)delegate

■ didSaveSelector:(SEL)didSaveSelector

■ contextInfo:(void *)contextInfo

iv. (NSString *)fileTypeFromLastRunSavePanel

So, if you want to have a custom control that specifies the file type for a file to be saved, you can follow this
sequence of steps:

i. Subclass prepareSavePanel: so that an "accessory view" containing the control is inserted into the Save
panel.

ii. Subclass fileTypeFromLastRunSavePanel to return the file type that the user chose.

iii. Arrange for your dataRepresentationOfType: method to examine the type that is passed in and save the
file according to the specified format. Your method could also examine the settings of other controls on the
auxiliary view if they can be used to change the format of the saved file. (For example, the accessory view
might be used in a program that saves JPEG files to specify a compression setting.)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.3 Loading from a File

Loading means that there is already a file on the computer's disk that we want to read and use in an
application. Writing the code to load a file is usually considerably easier than writing the code to save it,
because the hard work of figuring out which instance variables to save and getting them on the disk has
(presumably) already been done.

A user can load a file into the MathPaper application by doing any of the following:

● Choosing MathPaper's File Open menu command and specifying a file in the Open panel
● Choosing a file from MathPaper's File Open Recent submenu
● Double-clicking a MathPaper document file icon in the Finder
● Dragging a MathPaper document on top of the MathPaper.app application icon and dropping it

The NSDocument framework handles all of these file-opening techniques for us automatically! All we
need to do is to implement a single method called loadDataRepresentation:ofType:.

1. Insert the following loadDataRepresentation:ofType method into the implementation of the
MathController class in the file MathController.m:

- (BOOL)loadDataRepresentation:(NSData *)newHistory
 ofType:(NSString *)aType
{
 if ([aType isEqualToString:@"MathPaper"]) {
 MathDocument *temp;
 temp = [NSUnarchiver unarchiveObjectWithData:newHistory];
 if (temp) {
 [self setFrame:[temp frame]];
 [self setHistory:[temp history]];
 return YES;
 }
 }
 return NO;
}

When any of the actions described at the beginning of this section take place, the NSDocument architecture
will open the requested file, copy the file's data into the NSData object, and then pass this object and the
document file type to our method. Our method makes sure that the NSData object is of the correct type. If
it is, we ask the NSUnarchiver class to unarchive the NSData object into a temporary MathDocument
object called temp. If the load is successful, the instance variables frame and history are set from the
unarchived object. (We need to do this two-stage process because we decided to use the MathDocument
class itself as the repository for the information in the document, rather than using a separate class created
for that purpose.)

Unarchiving is the reverse of archiving: the NSUnarchiver class reads bytes from the NSData object and
creates integers, floating-point values, and objects. Just as the NSArchiver class called the method

encodeWithCoder: to perform the actual archiving, the NSUnarchiver class calls the method
initWithCoder: to perform the actual unarchiving. Thus, in order to support unarchiving, we need to
implement initWithCoder: as well.

2. Insert the initWithCoder: method shown here before the @end directive in MathController.
m:

- initWithCoder:(NSCoder *)coder
{
 frame = [coder decodeRect];
 history = [[coder decodeObject] retain];
 return self;
}

At this point, note the following important things. First, the MathPaper instance variables are decoded in
the same order in which they were encoded. This is very important! If you're trying to decode the variables
in a different order, the decoding operation will generate an error. (In fact, an exception will be raised. You
will not get corrupt data, as you might on other systems.)

Second, note that the history object is sent a retain message. Objects that are decoded are sent an
autorelease message so that they will be freed when they are no longer needed; it is the responsibility of
the class implementation to retain objects that are required for long-term use.

What happens if you save a MathPaper window in the upper-right corner when your screen resolution is set
to something like 1280 x 1024, and then you attempt to read it back in at a different resolution, such as
1024 x 768? On some other operating systems, such as Microsoft Windows, you might discover that the
window is "off the screen" and unusable. However, Cocoa looks at the size of the window whenever you
call its setFrame:display: method, and tries to keep windows on the computer's screen.

3. Compile and run your program. Try to open the files that you saved in the last section. The files
should appear with the contents that they had when you saved them, and they should appear in the
same places on the computer screen.

4. Quit MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.4 Marking a Document Window as Edited

An application should properly handle the closing of a document window by setting the docEdited flag, an
instance variable declared in the NSWindow class. The docEdited flag determines whether an on-screen
window's close button (in the upper-left corner of the window) is a solid red disk (docEdited=NO) or has a dot
in its center (docEdited=YES). The two possibilities are shown in Figure 13-6.

Figure 13-6. MathPaper windows without (left) and with (right) dot in close button

In addition to providing feedback to the user in the close button, the docEdited flag is used by Cocoa programs
to determine whether a document window can safely be closed without any loss of data. Obviously, the
docEdited flag should be set when the text inside the MathPaper page has been edited and unset when it has
been saved or newly opened.

The Cocoa multiple-document architecture automates much of the maintenance of the docEdited flag with a
second flag, called the change count. The framework knows to reset a document's change count when it is saved.

All you need to do is to set the change count when the document is first "dirtied."[1]

1. Insert the statement shown here in bold into the textDidChange: method in PaperController.m:

- (void)textDidChange:(NSNotification *)notification
{
 NSString *str = [[[self window] currentEvent] characters];

 [[self document] updateChangeCount:NSChangeDone];

 if ([str isEqualToString:@"\r"]) {
 // Get the last line of text and send it to Evaluator
 NSString *str = [theText string];
 int i;
 for (i=[str length]-2;i>=0;i--) {
 if (i==0 || [str characterAtIndex:i-1] == '\n') {
 NSRange llRange = NSMakeRange(i,[str length]-i);
 NSString *lastLine = [str substringWithRange:llRange];
 [toEvaluator writeData:
 [lastLine dataUsingEncoding:NSASCIIStringEncoding
 allowLossyConversion:YES]];

 // Do not allow any more changes to the text
 [theText setEditable:NO];
 return;
 }

 }
 }
}

Recall that the textDidChange: method is called every time a character is typed in a MathPaper window. Thus,
immediately after the first character is typed, the textDidChange: method sets the change count flag to
NSChangeDone, which tells the multiple-document architecture that a change has been made to the document.
When this happens, the architecture places the dot in the window's close button.

You might think that we need to reset the change count flag when the file is saved, but it turns out that this is not
necessary; the multiple-document architecture handles this for us automatically.

Well, that's it for the "save" code! Let's test it out:

2. Build and run the MathPaper application. Move your mouse into the MathPaper window. Notice that the
red close button does not have a dot in it. (However, if you mouse over the button itself, you'll see an X
inside: .)

3. Type an equation in the MathPaper window. Notice that the dot appears automatically as soon as the first
character is typed.

4. Choose File Save and save the MathPaper document. Notice that the dot disappears.

5. Now type another equation in the MathPaper window, and the dot will reappear.

6. Click the red close button with a dot in it. The MathPaper application should ask you, via a Save sheet, if
you want to save the window's contents before you close it, as shown in Figure 13-7.

Figure 13-7. A Save sheet appears when a user tries to close a window with a dot in its close button

7. Click Cancel in the Save sheet.

8. Try to quit MathPaper. You should be alerted that the window is still not saved and get the same Save
sheet shown in Figure 13-7.

9. Click the Don't Save button to exit MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.5 Adding Printing Capability

We've made our way through a lot in this chapter, and now it's time for a quick dessert. We
haven't done anything with printing so far. One of Cocoa's most powerful programming
features is that printing is extremely easy. Mac OS X's Quartz, which is used to display
things on the screen, is also used to send images to the printer. If your program can display
itself on the screen, it can print. It's that simple.

As we'll see in Chapter 15, when an NSView object receives a drawRect: message, the
view responds by drawing itself in the current graphics context. Normally, the current
graphics context is the screen, and the drawRect: message results in the view's drawing
itself on the computer's display. But if the current graphics context is the printer, the
drawRect: method causes the view to generate instructions that cause itself to be printed.
Under normal circumstances, you never send the drawRect: message directly to a view.
This message is sent for you by the AppKit when the view needs to display itself. You can
force a view to display itself by sending it a display message.

Printing is very similar. To have a view print itself, you just send the view a print:
message. This causes the AppKit to display a Print panel (dialog), ask the user which
printer he wishes to use, and then create a printer context. The view is then sent a sequence
of drawRect: messages, one for each page. The result of the drawing operations is
captured and then sent to the printer. Thus, the only thing that you need do to make an
NSView object print its contents is send it the print: message!

You can override other methods in the NSView class to get more control over printing. For
example, you can override the printJobTitle method to change the name of your print job.
The beginDocument method is invoked when your document starts printing, and
endDocument is invoked when the printing is finished. Each page's printing begins with
the beginPageInRect: method's being invoked.

One of the truisms of object-oriented programming, and especially programming with
Cocoa, is that the easiest line of code that you can possibly write, the line of code that is the
easiest to debug, and the line of code that is easiest to keep in sync with future versions of
the operating system, is the line of code that you don't write. By default, the File Print
menu command in the multiple-document framework sends the print: action message to
the first responder (you can check this premade connection by looking at MainMenu.nib
in IB).

Recall that when a message is sent to the first responder object, the message is sent to the
following objects in the following order, until a recipient for the message is found:

● The key window
● The key window's delegate
● The application's main window
● The application's main window's delegate
● The application's Application object
● The application's Application object's delegate

When MathPaper is running, the first object that the AppKit queries with the print: method
is the NSTextView in the key MathPaper window. The NSTextView, a subclass of
NSView, knows how to respond to the print: message and it prints itself. You don't need

to add printing to your MathPaper application - it's already there![2]

1. Run MathPaper from PB or the Finder (no new build is necessary).

2. Type an equation or two into the MathPaper window.

3. Choose MathPaper's File Print menu command to get the Print panel, as
shown in Figure 13-8.

Figure 13-8. Print panel in MathPaper

2. Select a printer and click Print. The contents of the MathPaper window will appear

on the printed page.

3. Alternatively, click the Preview button in the Print panel. MathPaper will then
create a PDF file and launch the Preview application to display it.

4. Quit MathPaper.

It's that simple - no additional programming is required for printing!

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.6 Summary

In this chapter, we learned how to save and load the contents of a window using Cocoa's
multiple-document architecture. Saving took some effort because we needed to figure out
how to archive the contents of a MathPaper document. After that, loading was relatively
easy. We also learned how to mark a window as edited and how to erase that mark after the
window's contents are saved. Finally, as frosting on the cake, we learned that printing was
already set up for us as part of the multiple-document architecture.

In the next chapter, we'll have some fun with a little animation. It's the last of five chapters
that build MathPaper. Then, in Chapter 15, we'll go into more depth about custom views.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 13. Saving, Loading, and Printing

13.7 Exercises

1. Save a MathPaper file containing several calculations and then view the contents of
the file in a Terminal window with the catcommand (or by using an editor). Look
up and identify any RTF commands that we didn't discuss in Chapter 12.

2. Reimplement the methods dataRepresentationOfType: and
loadDataRepresentation:ofType: so that the NSData object contains a serialized
NSDictionary object that itself contains the window's history and frame. The
advantage of using an NSDictionary object for archiving is that it can give you both
forward and backward compatibility with your saved documents - provided that
later versions create the fields that the older versions expect to find.

3. Reimplement the methods dataRepresentationOfType: and
loadDataRepresentation:ofType: so that the NSData object contains an XML
representation of the window's history and frame. What are the advantages of
using XML?

4. Add a calculator-like keypad to MathPaper so that users can click buttons to create
mathematical expressions in MathPaper's key window. Implement this so that only
one of these calculator-like keypads is needed for all of MathPaper - the new
window should be a floating panel (utility window) that automatically inserts
characters into the key window.

5. For each MathPaper document window, add an auxiliary window that displays the
contents of the history instance variable as it's being filled with mathematical
expressions and results. You will need to upgrade the MathDocument class and
create a separate NSWindowController object for each new auxiliary window.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 14. Drawing with Quartz

Although we've mentioned Quartz several times, we've never used it to do much in the way
of customized drawing. The reason for this is largely a result of the power of the Cocoa
Application Kit - most of the objects that we've used up to this point already know how to
generate Quartz to display themselves on the screen, so we haven't had to generate it
ourselves.

Quartz is itself a complete graphics drawing system. It is a subject far too vast to cover
fully in this chapter, so instead of even trying to give you a complete description of Quartz,
this chapter is designed simply to give you a sense of how Quartz drawing is done in the
Cocoa environment. At the end of the chapter, we'll provide some references for further
information.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.1 Animation in an About Panel

The ultimate goal of this chapter is to create an animation in an About panel (box) for our
MathPaper application. The MathPaper About panel will have four kinds of drawing in it,
each of which will require different Quartz primitives. We will draw an icon, a Bezier
curve, some straight lines, and some text, as shown in Figure 14-1. We will also
demonstrate animation: the Bezier curve will spin and the icon will pulsate. This chapter is
dedicated to learning enough about Quartz and Cocoa to develop this About panel. It'll be
fun!

Figure 14-1. MathPaper's About panel: the icon pulsates and the star spins

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.2 The Quartz Window Server

The Quartz Window Server is the part of the Mac OS X operating system that manages the
location of windows on the computer's screen and organizes the flow of events from the
mouse and the keyboard. While the Window Server is mostly transparent to you as a
programmer, you will occasionally see behavior in Mac OS X that is very different from
what you might experience in Mac OS 9 or in Windows, and it's important to understand
why. For example, you can still move the windows of a Mac OS X application that is
trapped inside an infinite loop (i.e., "hung"), because the moving of the windows is done by
the Window Server itself, not by the application. Another result of the Window Server is
that if you wish to draw on the screen, you must draw on a window - you cannot draw on

the screen's background itself.[1]

Quartz uses a mechanism called graphics context to present each Quartz client program
with its own independent copy of the Quartz environment. NSViews can also have their
own graphics contexts. A graphics context can be thought of as a "virtual printer." Each has
its own independent set of resources for drawing. You may have noticed on some Macs
running Mac OS 9 that when you switch from one application to another, the colors of the
application windows change. That sort of change never happens on Mac OS X, because the
colors of each window are completely independent of one another.

14.2.1 Buffered, Retained, and Nonretained Windows

The underlying communication channel between an application and Quartz is buffered and
bidirectional. Buffered means that the Quartz commands are drawn to an off-screen
window that is periodically flushed to the computer's display, so that the user sees only the
final result. Bidirectional means that you can ask questions of the Quartz environment and
get back sensible answers.

Normally, buffered drawing is precisely what you want, because it makes your program
run with fewer distractions to the user. Instead of having every one of your program's
drawing commands made visible directly on the screen, the program draws into the buffer.
When the drawing is finished, the buffer is flushed to the screen. The user sees only the
final state, rather than how the window was created. Buffering has a second advantage as
well: when a window is covered over and then exposed, the window's contents are redrawn
directly from the off-screen buffer, so the application does not need to reissue the drawing
commands. This results in smooth, fast redisplay.

In some cases, however, you may want to partially or fully disable window buffering. You
may have already noticed that in Interface Builder you can change the drawing type of a
window from the default Buffered type to Retained or Nonretained. Windows that are

Retained are drawn directly to the screen but are copied to an off-screen buffer when they
are moved off the screen or obscured. Drawing to a Retained window can be somewhat
faster than drawing to a Buffered window when you are working with very large images
with lots of colors, because the image needs to be copied only once. Nonretained windows
are just that: nonretained. You see all of the drawing as it takes place, and the window
contents are lost when the window is covered up or moved off the screen. Nonretained
windows can be useful if you are trying to optimize the speed of your drawing routines and
want to see precisely what they are doing - that is, when you are developing and debugging
your application - but it is unlikely that you will want to use Nonretained windows.

If you optimize your drawing commands properly, you may find that drawing in a Retained
window can be marginally faster than drawing in a Buffered window. To create a Retained
window, simply select the window's icon in IB's Nib File window, type Command-1 to
bring up the Window Info panel, and change the Backing radio-button selection from
Buffered to Retained.

The Window Info panel is associated with an instance of the
NSWindow class, whereas the NSWindow Info panel is
associated with the NSWindow class itself. They are different!

You may find that there are times that you need to flush the current graphics context in
order to force a screen update. You can use the following Objective-C statement to do this:

[[NSGraphicsContext currentContext] flush];

There is a lot more to the NSView and NSGraphicsContext classes than we can possibly
cover here. We recommend that you spend some time looking over the documentation for
these two classes before going on to the next section. While you're at it, you might also
spend some time with the documentation for NSView, NSGraphicsContext, and Quartz.

14.2.2 Drawing in an NSView with Quartz

There are two techniques you can use to draw in an NSView:

● Place Quartz function calls in the NSView's drawRect: method. When the window
is displayed or redisplayed, this drawRect: method will automatically be invoked,
and your specified drawing will take place.

● Bracket your Quartz calls within a call to the NSView's lockFocus and
unlockFocus methods (e.g., [myView lockFocus], followed by your Quartz calls,
followed by [myView unlockFocus]). The lockFocus method tells the Quartz
system that all subsequent drawing should take place in the view that you specify.

You should use the drawRect: method for any code that you write from scratch. With this
technique, you partition your program into two parts: the first part changes instance
variables of your NSView subclass, and the second part draws in the NSView's rectangle
based on the current values of these state variables. When your view needs to be redrawn,
it is sent the message setNeedsDisplay:YES. The AppKit then automatically invokes
lockFocus and unlockFocus and calls drawRect: as needed. This is the most efficient way
to draw with Cocoa and also the easiest to implement: all you need to concentrate on is
how to draw the object; Cocoa handles the when.

The lockFocus/unlockFocus approach is often used by programmers who are coming to
the Cocoa environment from other application frameworks and who are comfortable with
the idea of drawing directly to the window in response to some sort of event. This
technique is also useful when porting code from other operating systems.

We will use the drawRect: method for animating our About panel. This will allow us to
divide the animation logic into two separate parts - one section that controls the movement
of the animated figures and another that does the actual drawing. Dividing up the code in
this manner makes it easier to debug.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.3 Implementing the About Panel in MathPaper

In this section, we'll start implementing the animated About panel that we discussed earlier in
the MathPaper application. The first thing we'll do is to add a new module for the About panel's
nib file and arrange for the nib to be loaded automatically the first time the user chooses the
MathPaper About MathPaper menu command. (Recall that it's more efficient to use a
separate nib module for an About panel, as we did in our four-function Calculator in Chapter 6.
Then the nib needs to be loaded into memory only if it's used, and About panels aren't used very
often.)

1. Open MathPaper.pbproj in Project Builder.

2. Double-click on MainMenu.nib in the Groups & Files pane of PB's main window to
open this nib file in IB.

3. Choose IB's File New menu command, select Cocoa Empty in the Starting
Point panel, and then click the New button.

4. Choose IB's File Save menu command and save the new nib with the name
AboutPanel.nib in your ~/MathPaper/English.lproj folder (not the ~/
MathPaper folder). When prompted, add this file to the MathPaper project, as shown
in Figure 14-2.

Figure 14-2. Adding AboutPanel.nib to the MathPaper project

Note that the File's Owner of the MainMenu.nib file is an instance of the NSApplication class

(to see this in IB, click MainMenu.nib's File's Owner icon and type Command-1). Also note
that by default, the MathPaper About MathPaper menu command sends the
orderFrontStandardAboutPanel: action message to the File's Owner - that is, the
NSApplication object. (To see this in IB, choose the MathPaper About MathPaper menu
item, type Command-2, and then single-click the orderFrontStandardAboutPanel: method
with the dimple.)

NSApplication's orderFrontStandardAboutPanel: method actually invokes the
orderFrontStandardAboutPanelWithOptions: method. This causes the standard About panel
to appear and display the following: credits taken from the file called Credits.rtf; the
ApplicationName and ApplicationIcon taken from the application's main bundle; and the
version, copyright, and other information taken from the application property list.

This is all useful behavior for a default About panel. To customize it, however, we'll need to
create our own subclass of the NSApplication class, change the application configuration so that
MathPaper is built using our subclass, and override the orderFrontStandardAboutPanel:
method.

First we'll create the NSApplication subclass called MathApplication. Then we'll add an outlet
called aboutPanel that will eventually be set to point to our customized About panel:

5. Click the File's Owner icon in the MainMenu.nib window in IB, and then click the
Classes tab in the same window. The NSApplication class should be selected. (If it is not
selected, use the Search field to find it and then select it.)

6. Choose IB's Classes Subclass NSApplication menu command, and you'll see the
new subclass, called MyApplication, in the MainMenu.nib window.

7. Change the subclass's name from "MyApplication" to "MathApplication".

8. Type Command-1 to bring up the MathApplication Class Info dialog and add an outlet
called aboutPanel to the class, as shown in Figure 14-3.

Figure 14-3. MathApplication subclass of NSApplication with new aboutPanel outlet

9. Choose IB's Classes Create Files for MathApplication menu command and browse
to your ~/MathPaper folder in the resulting Save panel.

10. Make sure that all three checkboxes are selected so that IB will save the
MathApplication.h and MathApplication.m files in the ~/MathPaper
folder and add them to the MathPaper target (see Figure 14-4). Click the Choose button.

Figure 14-4. Creating MathApplication class files and adding them to the MathPaper
target

11. Back in PB, click the Targets vertical tab, the MathPaper target, and finally the
Application Settings tab.

12. Under the Cocoa-Specific section, change the Principal class from NSApplication to
MathApplication, as shown in Figure 14-5.

Figure 14-5. Changing MathPaper's principal class to MathApplication

If you don't set the class of the File's Owner to MathApplication, the
Application Kit will not instantiate a MathApplication object, and you
will see the standard Cocoa About panel.

Now let's make sure that both the MainMenu.nib and AboutPanel.nib files know about
the new MathApplication class.

13. Back in IB, click the File's Owner icon under the Instances tab in the MathPaper.nib
window.

14. Type Command-5 and change the File's Owner's class from NSApplication to
MathApplication (two classes above NSApplication).

15. Type Command-S to save the MathPaper.nib file.

Because our MathApplication subclass was created in MainMenu.nib, it isn't yet "known" to
AboutPanel.nib. We'll change that in the next two steps:

16. Click anywhere in the AboutPanel.nib window to select the nib.

17. Go out to the Finder and select the MathApplication.h file icon in your ~/
MathPaper folder.

18. Drag the MathApplication.h file icon from the Finder and drop it in the
AboutPanel.nib window. (This is an alternative to choosing Classes Read
MathApplication.h.) The MathApplication class should now show up as a subclass of
NSApplication in the AboutPanel.nib window.

19. Click the Instances tab and then select the File's Owner icon in the AboutPanel.nib
window.

20. As you did in MainMenu.nib, change the class of the File's Owner icon to
MathApplication.

Now we need to create the empty About panel itself:

21. Choose IB's Tools Palettes Show Palettes menu command to make sure that
the Palettes window is visible.

22. Click the Cocoa-Windows button in the Palettes window toolbar to select the Cocoa-
Windows palette (which can be seen in Figure 14-6).

Figure 14-6. Connecting the File's Owner to the About MathPaper panel

23. Drag the Panel icon from the Cocoa-Windows palette and drop it on the desktop. You
should see a new (big) panel where you dropped the icon and a new Panel icon in the
AboutPanel.nib window.

24. Move this new panel to the center of the screen (where About panels should open) and
resize it so that it's about the same size as the panel with the title "About MathPaper" in
Figure 14-6.

25. With the new panel selected, type Command-1 to display the Window Info inspector.

26. Change the title of the window from "Panel" to "About MathPaper".

27. Now Control-drag a connection from the File's Owner icon to the Panel icon in the
AboutPanel.nib window (or drag directly to the About MathPaper panel itself).

28. Double-click the aboutPanel outlet to complete the connection, as shown in Figure
14-6.

29. Back in PB, double-click the MathApplication.m file under the Classes group and
add the orderFrontStandardAboutPanel: method (shown here in bold) that we
discussed earlier:

#import "MathApplication.h"

@implementation MathApplication

- (void)orderFrontStandardAboutPanel:(id)sender
{
 if (aboutPanel == nil) {
 [NSBundle loadNibNamed:@"AboutPanel" owner:self];
 }
 [aboutPanel makeKeyAndOrderFront:self];
}

@end

30. Build and run MathPaper. Save all files when prompted.

31. With MathPaper running, choose MathPaper About MathPaper and make sure that
the new About panel appears in the middle of the screen (where you left it in IB).

32. Quit MathPaper.

It is very important that your MathPaper application display an empty About panel before you
go further, because our animation will get complicated. If your application does not display an
About panel, go back and check your work.

14.3.1 Creating the MathAnimation View

MathPaper's animation subsystem will consist of four parts:

● An initialization method that sets up the whole thing
● A timer that "ticks" every 30th of a second and causes the animation to advance to the

next frame

● A method that knows how to advance the state variables used to keep track of the
animation

● A method that knows how to draw the current state of the MathPaper animation based on
the values of the state variables

All of this logic will be encapsulated within a new subclass of the NSView class, which we'll
call MathAnimation:

33. Back in IB, select the NSView class under the Classes tab in the AboutPanel.nib
window.

34. Choose IB's Classes Subclass NSView menu command to create a new subclass
called "MyView".

35. Change the name of "MyView" to "MathAnimation".

36. Type Command-1 and add the new action method called tick: to the MathAnimation
class, as shown in Figure 14-7.

Figure 14-7. Adding the tick: action method to the MathAnimation class

37. Choose IB's Classes Create Files for MathAnimation menu command to create the
two MathAnimation class files. Insert them to the MathPaper target, and click Choose.

38. Still in IB, click the Cocoa-Containers button in the Palettes window toolbar to select the

Cocoa-Containers palette (shown in Figure 14-8).

39. Drag the CustomView icon from the Cocoa-Containers palette and drop it inside the
About MathPaper panel.

40. Resize the CustomView so that it fills the About MathPaper panel.

41. Type Command-1 and change the class of the CustomView from NSView to
MathAnimation, as shown in Figure 14-8.

Figure 14-8. Changing the CustomView class to MathAnimation

42. Type Command-S to save the AboutPanel.nib file.

The MathAnimation view in the About panel will draw the four distinct elements shown in
Figure 14-1:

● The application's name, MathPaper

● The five lines underneath the application's name
● The pulsating icon
● The spinning star

Drawing each of these elements requires use of a different part of the Quartz API. To do all this,
we'll first need to learn more about Quartz. (Quartz, as you probably know, is also the name of a
very hard mineral - fortunately, using Mac OS X's Quartz isn't hard at all!)

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.4 Quartz Graphics Data Types

As we discussed earlier, the Application Kit defines a number of data types and structures that are useful for
drawing with Quartz. These data types are defined in the file NSGeometry.h, and we'll describe some of them
in this section.

Any point on the computer's screen is defined by an NSPoint structure:

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

An extent in space is defined by an NSSize structure:

typedef struct _NSSize {
 float width; // should never be negative
 float height; // should never be negative
} NSSize;

Conveniently, a rectangle, NSRect, is defined by an extent from a point:

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

Cocoa defines a number of inline functions for creating and managing these structures. The code for an inline
function is integrated directly into the code for its callers, so there is no function call overhead associated with
using them. These functions allow you to create an unnamed structure that is used as an argument in a function
call or method invocation and then destroyed. The functions are:

NSPoint NSMakePoint(float x, float y)
NSSize NSMakeSize(float w, float h)
NSRect NSMakeRect(float x, float y, float w, float h)

There are also a number of convenience functions in Cocoa, which are summarized in Table 14-1.

Table 14-1. Convenience graphics functions

Graphics function Purpose

float NSMaxX(aRect) Returns the maximum X coordinate (the right side) of the rectangle

float NSMaxY(aRect)
Returns the maximum Y coordinate (usually the top, unless the
coordinate system is flipped) of the rectangle

float NSMidX(aRect) Returns the horizontal median of the rectangle

float NSMidY(aRect) Returns the vertical median of the rectangle

float NSMinX(aRect) Returns the minimum X coordinate (the left side) of the rectangle

float NSMinY(aRect)
Returns the minimum Y coordinate (usually the bottom) of the
rectangle

float NSWidth(aRect) Returns the width of the rectangle

float NSHeight(aRect) Returns the height of the rectangle

BOOL NSEqualPoints(point1,point2) Returns YES if point1==point2

BOOL NSEqualSizes(size1,size2) Returns YES if size1==size2

BOOL NSEqualRects(rect1,rect2) Returns YES if rect1==rect2

BOOL NSIsEmptyRect(aRect) Returns YES if aRect has a zero size

NSRect NSUnionRect(rect1,rect2) Returns the union of two rectangles

NSRect NSIntersectionRect(rect1,
rect2)

Returns the intersection of two rectangles

BOOL NSPointInRect(aPoint,aRect) Returns YES if aPoint is inside aRect

BOOL NSContainsRect(aRect,bRect) Returns YES if bRect is inside aRect

BOOL NSIntersectsRect(aRect,bRect) Returns YES if the two rectangles intersect

NSString *NSStringFromPoint(aPoint) Returns a standard string coding of a point

NSString *NSStringFromSize(aSize) Returns a standard string coding of a size

NSString *NSStringFromRect(aRect) Returns a standard string coding of a rectangle

NSPoint NSPointFromString(aString) Maps the string back to a point

NSSize NSSizeFromString(aString) Maps the string back to a size

NSRect NSRectFromString(aString) Maps the string back to a rectangle

There are other functions as well; you should review the file NSGeometry.h or the "Functions" section of the
Foundation framework documentation to learn about them.

14.4.1 Setting Colors, Drawing Rectangles, and Drawing Lines

The NSColor class is used both to specify a particular color and to set it to be the current color in the current
drawing context.

The NSColor class predefines 15 colors as class (or factory) methods. They are shown in Table 14-2 (the +
means they are class methods).

Table 14-2. Predefined color methods in the NSColor class

+ blackColor + blueColor + brownColor

+ clearColor + cyanColor + darkGrayColor

+ grayColor + greenColor + lightGrayColor

+ magentaColor + orangeColor + purpleColor

+ redColor + whiteColor + yellowColor

You can also create a color by specifying its components using a variety of color models, including RGB,
CYMK, HSB, and Pantone colors. These NSColor class methods are listed in Table 14-3.

Table 14-3. Factory methods for creating colors

+ colorWithCalibratedHue:saturation:brightness:alpha:

+ colorWithCalibratedRed:green:blue:alpha:

+ colorWithCalibratedWhite:alpha:

+ colorWithCatalogName:colorName:

+ colorWithDeviceCyan:magenta:yellow:black:alpha:

+ colorWithDeviceHue:saturation:brightness:alpha:

+ colorWithDeviceRed:green:blue:alpha:

+ colorWithDeviceWhite:alpha:

After you have created an NSColor object, you can make it the current drawing color by sending it the set
method. Remember that before you call this method, a view must be established as the current drawing context
with the lockFocus method (and have its drawing method called with drawRect:).

After you set a color, you can draw in that color. In the NSGraphics.h file, you'll find an extensive list of
functions for drawing a variety of rectangles, bitmaps, bezeled rectangles, and so on. More complicated objects
can be drawn using the NSBezierPath class. One way to think of this class is as a variable-length storage object
that allows you to create a path with a particular combination of lines and curves. This object can have a specific
line width, fill, end caps, etc. When you're done, you send the instance the stroke method to perform all of the
drawing.

For example, we could use the following two statements to draw a white rectangle in the currently selected
drawing view:

[[NSColor whiteColor] set];
[NSBezierPath fillRect:rect];

We could draw four horizontal black lines, each two points thick, using the following sequence:

[[NSColor blackColor] set];
[NSBezierPath setDefaultLineWidth:2.0];
[NSBezierPath strokeLineFromPoint:NSMakePoint(20,20)
 toPoint:NSMakePoint(300,20)];
[NSBezierPath strokeLineFromPoint:NSMakePoint(20,30)
 toPoint:NSMakePoint(300,30)];
[NSBezierPath strokeLineFromPoint:NSMakePoint(20,40)

 toPoint:NSMakePoint(300,40)];
[NSBezierPath strokeLineFromPoint:NSMakePoint(20,50)
 toPoint:NSMakePoint(300,50)];

To create a simple four-pointed star, we could use four Bezier curves that have their endpoints at the corners of
the star and their control points in the star's center (see the documentation for more on Bezier curves), as shown
in this code:

NSBezierPath *path = [NSBezierPath bezierPath];
NSPoint center = NSMakePoint(50,50);

[[NSColor blackColor] set];
[path setLineWidth:1.0];
[path moveToPoint:NSMakePoint(50,0)];
[path curveToPoint:NSMakePoint(100,50)
 controlPoint1:center controlPoint2:center];
[path curveToPoint:NSMakePoint(50,100)
 controlPoint1:center controlPoint2:center];
[path curveToPoint:NSMakePoint(0,50)
 controlPoint1:center controlPoint2:center];
[path curveToPoint:NSMakePoint(50,0)
 controlPoint1:center controlPoint2:center];
[path stroke];

14.4.2 Drawing Text with Quartz

To draw text with Quartz, you need the following:

● A view in which to draw
● The actual text that you want to draw
● The font, font size, and other attribute information for the text
● A location in the selected view where you want the text to be drawn

You can draw text in Cocoa with either the NSString class or the NSAttributedString class. The classes
themselves don't do the actual drawings; instead, the AppKit adds a category to each called NSStringDrawing.
Details of this category can be found in the include file NSStringDrawing.h.

The view in which you want to draw is selected with the lockFocus method. The text is specified by the contents
of the NSString or NSAttributedString class with which you are drawing.

The AppKit allows you to specify a wide variety of attributes when you draw text. These attributes can be stored
in an NSDictionary. If you are drawing text with the NSString class, the NSDictionary must be provided to the
NSString object when the drawing begins. If you are drawing with an NSAttributedString object, the attributes
can be applied to a range of characters within the NSAttributedString class before you actually draw. Table 14-4
lists the available attributes. These attributes are defined in the file NSAttributedString.h, and they are
all NSString * values.

Table 14-4. Drawing attributes for the NSAttributedString and NSString classes

Attribute identifier Value class Default value

NSFontAttributeName NSFont 12-point Helvetica

NSForegroundColorAttributeName NSColor Black

NSBackgroundColorAttributeName NSColor None (no background drawn)

NSUnderlineStyleAttributeName NSNumber, as an int None (no underline)

NSSuperscriptAttributeName NSNumber, as an int 0

NSBaselineOffsetAttributeName NSNumber, as a float 0.0

NSKernAttributeName NSNumber, as a float 0.0

NSLigatureAttributeName NSNumber, as an int 1 (standard ligatures)

NSParagraphStyleAttributeName NSParagraphStyle
Value returned by NSParagraphStyle's
defaultParagraphStyle method

NSAttachmentAttributeName NSTextAttachment None (no attachment)

For example, let's say that we want to draw some text in green, 36-point Helvetica. First we need to create the
font. We can do this using the fontWithName:size: class method, as follows:

NSFont *font = [NSFont fontWithName:@"Helvetica" size:36.0];

Next we need to create an NSMutableDictionary of key/value pairs that contains this font as the value for the
key NSFontAttributeName and the green NSColor object as the value for the NSForegroundColorAttributeName
key.

The NSMutableDictionary should look like this:

NSMutableDictionary *attrs = [NSMutableDictionary dictionary];
[attrs setObject:font forKey:NSFontAttributeName];
[attrs setObject:[NSColor greenColor]forKey:NSForegroundColorAttributeName];

With the NSMutableDictionary set up, we can now create an NSAttributedString that contains the text that we
want to draw, modified by the new attributes:

str = [[NSMutableAttributedString alloc]

 initWithString:@"MathPaper" attributes:attrs];

To draw with this string, we need to lock focus on a particular view and use the NSAttributeString's
drawAtPoint: method:

[aView lockFocus];
[str drawAtPoint:NSMakePoint(20,50)];
[aView unlockFocus];

Even better would be implementing a drawRect: method to draw the text:

- (void)drawRect:(NSRect)rect
{
 [str drawAtPoint:NSMakePoint(20,50)];
}

As an alternative to drawing with an NSAttributedString class, we can simply use an NSString object. We can
use any NSString object, even one created with the @"" operator:

- (void)drawRect:(NSRect)rect
{
 [@"Text" drawAtPoint:NSMakePoint(20,20) withAttributes:attrs];
}

If we know that the text should fit within a particular size box, we can use the drawInRect:withAttributes:
method:

- (void)drawRect:(NSRect)rect
{
 [@"Text" drawAInRect:NSMakeRect(20,20,100,100)
 withAttributes:attrs];
}

The drawInRect:withAttributes: method is also useful for displaying text that is wrapped to a particular width.

14.4.3 Drawing Images with Quartz

It's just as easy to draw pictures with Quartz as it is to draw text. In fact, in some ways it's even easier.
Practically anything that you'll ever need to do with an image in Cocoa can be done with the NSImage class for
manipulating images.

Using the NSImage class, you can do all of the following:

● Read an image from a file.
● Scale an image to a particular size.
● Convert an image from one representation to another.
● Draw an image in a view, or combine the contents of the image with the contents already present in the

view.

NSImage accomplishes this magic by using objects of another class, called NSImageRep, to perform the actual
work of storing the image. A single NSImage instance can have several NSImageRep representations of an

image. For example, it might have both a bitmap representation for quick redisplay on the screen and a PDF
representation for detailed display on a printer. (At this point, we recommend that you read the Cocoa
documentation for the NSImage class.)

The NSImage class transfers images to the screen through a process called compositing. Compositing is a way of
combining two images, a source image and a destination image (the image already in place on the screen). The
combining is done with a special function called the compositing operator, which combines the two images on a
pixel-by-pixel basis and displays the result.

When you composite, you can specify the following:

● The source image for the compositing.
● The destination image.
● The compositing operation.
● The fraction of the compositing operation that should be used for calculating the final result. A fraction

of 1.0 means that the source pixels should be set entirely depending on the results of the compositing. A
fraction of 0.5 means that half of the pixel's final value should come from the result of the compositing
operation, and half of the pixel's final value should be the same as the original value.

Cocoa supports 14 different compositing operations. These operations are defined in the file NSGraphics.h.
The two most common compositing operations are NSCompositeCopy and NSCompositeSourceOver.
NSCompositeCopy copies the rectangle bounded by the source image into the destination image; everything in
the destination image is lost. NSCompositeSourceOver is similar, but the source image is placed on top of the
destination image, so that you may be able to see parts of the destination image through any pixels in the source
image that are transparent or partially transparent. Because of the way Aqua handles transparency, you should
generally use NSCompositeSourceOver and not NSCompositeCopy. If you have a few transparent pixels in your
source image, NSCompositeCopy will copy these transparent pixels to the destination, making it transparent as
well. This is not usually what you want.

The most common compositing operations are listed in Table 14-5. In each case, the source is defined as the
image stored inside the NSImage object, while the destination is the region in which the NSImage is being
composited. The destination can be any locked focus, including an NSView, another NSImage, or even a Quartz
graphics state.

Table 14-5. Common compositing operations

Compositing operation Meaning

NSCompositeSourceOver
"Source over destination" composites with attention to transparency in NSImage.
This is the operation that you should normally use to "copy" an image into a
window.

NSCompositeCopy
Copies the image to the NSView (destination). You generally should not use this
operation, as it can cause your windows to be "promoted" to windows that contain
alpha (transparency) if the source image has alpha.

NSCompositeClear Clears the area where the image is to be copied. This isn't used much.

NSCompositeXOR Performs an exclusive-OR between the NSImage and the NSView destination.

NSCompositePlusDarker
Performs mathematical addition between the source and the NSView. Whites get
brighter and blacks get darker.

NSCompositeHighlight Highlights the source image.

The key method for compositing is compositeToPoint:operation. Because this method is a Quartz drawing
operation, it should be used only inside a drawRect: method or between invocations of the lockFocus and
unlockFocus methods sent to the NSView object in which the compositing is to occur.

For example, to display an NSImage in a view is to lock focus on the view and then to composite the image to a
point. To do this, you might use code that looks like this:

- drawRect:(NSRect)aRect
{
 image = [NSImage imageNamed:@"PaperIcon"];
 [image compositeToPoint:NSMakePoint(100,100)
 operation:NSCompositeSourceOver];
}

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.5 Timers

Modern applications are filled with animation. Press a mouse in the middle of a word-
processor window and drag the mouse cursor up, off the window: the window scrolls until
you release it. Press the mouse on the window's down arrow: the window scrolls in the
other direction. Clocks have animated hands. Even web browsers have animated icons that
tell you they are fetching the next page.

An animation basically consists of three things:

● An event that is repeated, perhaps in different locations
● A frequency with which the event is repeated
● A condition that causes the repetition to stop

Let's look back at our dragging example and see how it complies with these requirements.
When you drag the mouse beyond the top of a word-processor window or click the down
arrow, the word processor needs to move down in the document, redraw the window, wait
to see if you have released the mouse, and then repeat the process. This is exactly the
procedure that programs like Microsoft Word for Windows follow, and as a result, they
have an annoying problem: as computers have gotten faster, these programs have scrolled
faster. That was fine when PC users were moving from a 100-MHz to a 200-MHz Pentium
processor. But now that PC users have 1.4-GHz Pentium processors, Word scrolls so fast
that it's difficult to control.

Cocoa takes a different approach to scrolling. When you drag the mouse off the window or
press the mouse on the down arrow, the Application Kit creates a timer to manage the
scrolling. The timer triggers a sequence of instructions that moves the contents of the
window down and redraws the screen. The timer is registered with the program's main
event loop, so that it is run on a periodic basis - typically 10 times a second. This provides
for smooth, continuous scrolling that doesn't get faster when you switch to a faster
computer. (We wish that Microsoft had taken this approach with Word!)

14.5.1 Adding and Removing Timers

Timers are implemented with Cocoa's NSTimer class, which is part of Cocoa's Foundation.
The most common way to create a timer is to use the NSTimer class method. The
declaration of this method is:

@interface NSTimer : NSObject
...
+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti

 target:(id)aTarget
 selector:(SEL)aSelector
 userInfo:(id)userInfo
 repeats:(BOOL)yesOrNo;

When you create a timer, you specify four arguments:

● The fire time for the timer - that is, how long from now it should be fired. This
argument is expressed in floating-point seconds.

● The target of the timer - that is, the object that will receive the message when the
timer fires.

● The selector to call in the target.
● Data to be provided to the handler each time it is called.
● A Boolean flag indicating whether the timer should repeat.

Two things are guaranteed about timers: they will not fire early and they can fire only when
the event loop has control. Beyond that, you're on your own. If you ask that your handler be
called every 5 seconds, it may actually be called every 5.3 seconds as a result of all of the
other things going on in your Mac. Thus, your handler might be called at 5 seconds, then at
10.3 seconds, then at 15.7 seconds, then at 21 seconds. Your program must be tolerant of
this issue.

When the timer is no longer needed, you should get rid of it by invoking its invalidate
method:

[aTimer invalidate];

Timed entries are ideal for animation, because they let your program animate some motion
in a manner that is independent of the computer's speed. Even better, the program can still
accept events from the user while the animation is taking place.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.6 Putting It All Together

In the remainder of this chapter, we'll implement the MathAnimation view, as well as a special surprise.

1. Insert the statements shown here in bold into the MathAnimation.h file:

#import <Cocoa/Cocoa.h>

@interface MathAnimation : NSView
{
 float theta; // Current rotation for the star
 float fraction; // Current intensity for the pulsing icon
 float ddelta; // Density delta for icon
 NSMutableAttributedString *str; // "MathPaper" string
 NSImage *image;
 NSTimer *timer; // Our timer
}
- (IBAction)tick:(id)sender;

@end

The purpose of these six instance variables is easier to understand with the About panel from Figure 14-1 in
mind, so you might want to go back and take a quick look at it. The first three variables, theta, fraction,
and ddelta, will be used to keep track of the animation's rotation, intensity, and density, respectively. They
will be updated by NSTimer methods as they are invoked. The NSMutableAttributedString variable str will be
used to hold the attributed "MathPaper" text. We'll create this string when the MathAnimation view is first
initialized, and then draw it on the view each time that we are asked to draw the view. The same is true for the
image held in the NSImage instance variable, image. Finally, the NSTimer variable timer will be used to keep
track of the timer. This timer is created when the window is exposed. We need to keep the instance variable so
we can invalidate the timer when the window is closed.

2. Edit the file MathAnimation.m and add the #define statements and the awakeFromNib method
shown here:

@implementation MathAnimation
#define FPS 30.0 // Frames per second
- (void)awakeFromNib
{
 // Set up the attributed text
 NSFont *font = [NSFont fontWithName:@"Helvetica" size:36.0];
 NSMutableDictionary *attrs = [NSMutableDictionary dictionary];
 [attrs setObject:font forKey:NSFontAttributeName];
 [attrs setObject:[NSColor greenColor]
 forKey:NSForegroundColorAttributeName];
 str = [[NSMutableAttributedString alloc]
 initWithString:@"MathPaper"
 attributes:attrs];
 ddelta = (1.0 / FPS) / 5.0;
 theta = 0.0;
 image = [[NSImage imageNamed:@"PaperIcon"] retain];

 [[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(start:)
 name:NSWindowDidBecomeKeyNotification object:[self window]];
 [[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(stop:)
 name:NSWindowWillCloseNotification object:[self window]];
}

The awakeFromNib method is automatically invoked when the MathAnimation view is first unpacked from
AboutPanel.nib. The first half of the method sets up the attributed text that will draw "MathPaper" in the
window. The text is drawn in 36-point green Helvetica, which is positively ugly! The variable ddelta is the
increment that will be added to the variable fraction each time the timer clicks. We initialize theta to the
initial rotation angle for the star. The NSImage object image is set to be the same image that we use for the
document icon. Finally, we add two "observers" for the default notification center. The first observer will be
self - that is, the MathAnimation view - and will receive the start: message when the window in which it
resides becomes the key window. The second observer will cause the stop: message to be sent to the
MathAnimation view when the window is closed. Notifications are similar to delegate messages, except that any
number of objects can receive the same notification. This completes the initialization logic.

Next, we implement the start: and stop: methods that were referenced earlier:

3. Insert the start: and stop: methods in MathAnimation.m:

- (void)start:(void *)userInfo
{
 if (!timer) {
 timer = [NSTimer scheduledTimerWithTimeInterval:1.0/FPS
 target:self
 selector:@selector(tick:)
 userInfo:0
 repeats:YES];
 }
}
- (void)stop:(void *)userInfo
{
 if (timer) {
 [timer invalidate];
 timer = nil; // No need to release; we did not retain the
 // NSTimer object because scheduled timers are
 // automatically retained by the AppKit
 }
}

The start: method starts the NSTimer if it does not already exist. The stop: method stops the timer and then
resets the timer instance variable to 0. This is necessary so that the timer will be recreated if the window is
exposed again.

4. Insert the following updated drawRect: method near the end of MathAnimation.m:

- (void)drawRect:(NSRect)rect
{
 float x,y,t2;
 NSBezierPath *oval;

 // Paint the background white
 [[NSColor whiteColor] set];
 NSRectFill([self bounds]);

 // Draw the name "MathPaper"; str was set in awakeFromNib
 [str drawAtPoint:NSMakePoint(20,50)];

 // Draw those cool straight black lines
 [[NSColor blackColor] set];
 for (x=0; x<50; x+=10) {
 [NSBezierPath setDefaultLineWidth:(50-x)/10.0];
 [NSBezierPath strokeLineFromPoint:NSMakePoint(20+x,50-x)
 toPoint:NSMakePoint(300.0,50-x)];
 }

 // Put the PaperIcon in the upper-left corner of the panel
 [image compositeToPoint:
 NSMakePoint(10.0, [self bounds].size.height-128.0)
 operation:NSCompositeSourceOver fraction:fraction];

 // Make a path for the star
 x = [self bounds].size.width * .75;
 y = [self bounds].size.height * .75;
 oval = [NSBezierPath bezierPath];

 [oval moveToPoint:
 NSMakePoint(x + cos(theta)*50, y + sin(theta) * 50)];
 for (t2=0; t2<=2*M_PI+.1; t2+=M_PI*.5) {
 [oval curveToPoint:NSMakePoint(x + cos(theta+t2)*50,
 y + sin(theta+t2)*50)
 controlPoint1:NSMakePoint(x,y)
 controlPoint2:NSMakePoint(x,y)];
 }
 [[NSColor blackColor] set];
 [oval stroke];
}

This method may seem complicated, but it is actually quite straightforward. This is what it does:

● Paints the entire view (background) white
● Draws the word "MathPaper"
● Draws those five black lines
● Composites the PaperIcon in the upper-left corner
● Creates an NSBezierPath for the star, sets the drawing color to black, and strokes (actually draws) the star

M_PI is the ANSI C-defined constant for pi, which is the ratio of a circumference of
a circle to its radius.

There is only one method left to create - the tick: method that supports our animation:

5. Insert the statements shown here in bold into the implementation of the tick: method in
MathAnimation.m:

- (IBAction)tick:(id)sender
{
 theta += (2.0 * M_PI / FPS) / 2.0; // Spin every 2 seconds
 fraction += ddelta; // Pulse every 5 seconds
 if (fraction<0 || fraction>1) { // Do we need to reverse pulse?
 ddelta = -ddelta;
 fraction += ddelta;
 }
 [self setNeedsDisplay:YES];
}

All this method does is increment the theta and fraction variables and then display the updated view. If
fraction is out of range, that means that it has gone too far, and it's time to reverse direction. After the
instance variables are updated, [self display] causes focus to be locked on the MathAnimation view and
drawRect: to be called.

6. Build and run MathPaper.

7. Choose MathPaper About MathPaper and admire your animation.

8. Quit MathPaper.

Pretty cool, eh? But you haven't seen anything yet!

14.6.1 Adding an Easter Egg

What good would an About panel be without an Easter egg?[2] This Easter egg will show up when the MathPaper
 About MathPaper menu command is chosen with either the Shift or Option (Alt) modifier key held down.

To implement this, we'll need to modify our MathApplication class so that it can detect this menu/key
combination and pass the information along to our MathAnimation class. Then we'll need to modify the
MathAnimation class to detect the fact that it should display an Easter Egg, and then to actually display it.

We will store an easterEgg flag in the MathApplication class to indicate whether a modifier key was held
down when the user chose MathPaper About MathPaper.

9. Insert the two lines shown here in bold into the MathApplication.h file:

#import <Cocoa/Cocoa.h>

@interface MathApplication : NSApplication
{
 IBOutlet id aboutPanel;
 BOOL easterEgg;
}

-(BOOL)doEasterEgg;

@end

It's actually fairly easy to find out if the Option key is down - just query the current event! We'll do that in the
following modification to the MathApplication implementation:

10. Insert the lines shown here in bold into the MathApplication.m file:

@implementation MathApplication

- (void)orderFrontStandardAboutPanel:(id)sender
{
 if (aboutPanel == nil) {
 [NSBundle loadNibNamed:@"AboutPanel" owner:self];
 }

 easterEgg =
 ([[self currentEvent] modifierFlags]
 & (NSShiftKeyMask | NSAlternateKeyMask)) != 0;
 [aboutPanel makeKeyAndOrderFront:self];
}

-(BOOL)doEasterEgg
{
 return easterEgg;
}

@end

To finish this off, we need to modify the MathAnimation class to check the value of the easterEgg flag and
act accordingly:

11. Insert the following #import directive near the top of the MathAnimation.m file:

#import "MathApplication.h"

12. Replace the first statement in the tick: method in the MathAnimation.m file with the statements
shown here in bold:

- (IBAction)tick:(id)sender
{

 if ([((MathApplication *)NSApp) doEasterEgg]) {
 theta -= (4.0 * M_PI / FPS) / 2.0; // Spin reverse faster
 }
 else {
 theta += (2.0 * M_PI / FPS) / 2.0; // Spin every 2 seconds
 }

 fraction += ddelta; // Pulse every 5 seconds
 if (fraction<0 || fraction>1) {
 ddelta = -ddelta;
 fraction += ddelta;
 }
 [self display];
}

13. Build and run MathPaper.

14. Hold down the Option key and choose MathPaper About MathPaper, then admire your Easter Egg!

15. Quit MathPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.7 Summary

In this chapter, we learned about Quartz 2D and the way that the Cocoa Application Kit
communicates with the Quartz Window Server. We also learned a little bit about drawing
directly with Quartz inside an NSView object, and then explored Quartz timed entries.

This chapter marks the end of our MathPaper odyssey, although we'll use parts of it in our
next major application, GraphPaper, which starts in Chapter 16. Before we get to
GraphPaper, however, we'll learn much more about the drawRect: method - the proper
way to make your NSView show its stuff.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.8 Exercises

1. When the About MathPaper panel first opens, there is an annoying flash where the
pulsating icon is located. What is it? Fix it.

2. Change the star in the About MathPaper panel to a fancier design that animates
well.

3. Instead of subclassing the NSApplication object, you could have implemented the
About panel by creating an Application Delegate class and having the
AboutMathPaper menu command send a message directly to an instance of the
delegate class. What would be the advantages and the disadvantages to this
approach? Try implementing it.

4. The About panel has a memory leak: the NSImage for the PaperIcon is retained but
it is never released. The image should be released in a dealloc method. Implement
this method. Will the method ever be invoked? If not, what's the point of writing it?

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 14. Drawing with Quartz

14.9 References

1. Mac OS X home page for Cocoa drawing and imaging:

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/Misc/DrawingPage.html

2. Home page for Apple's Quartz system (mainly for Carbon programmers):

http://developer.apple.com/quartz/

At this site, you will find:

"Quartz Primer"

An introduction to drawing with Quartz. This document explains how
Quartz is different from Mac OS 9's QuickDraw and explains issues such as
color management, transparency, and the Quartz graphics primitives. It is
designed for Carbon programmers.

"Drawing with Quartz 2D"

This document provides more information about drawing with Quartz. It is
also aimed at Carbon programmers.

"Quartz 2D Reference"

This document includes the entire Quartz 2D API that is accessible from
Carbon.

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/DrawingPage.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Misc/DrawingPage.html
http://developer.apple.com/quartz/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part III: MathPaper: A Multiple-Document, Multiprocess Application

Chapter 15. Drawing in a Rectangle: More Fun with
Cocoa Views

In the previous chapter, we saw how to draw in an NSView using Quartz drawing
commands. The purpose of this chapter is to learn more about NSView's drawRect:
method and Cocoa views in general. Recall that to us a view is any object that is a member
of the NSView class or any of its subclasses (just as a responder is any object that is a
member of the NSResponder class or any of its subclasses).

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.1 The Advantages of NSView's drawRect: Method

As we saw in Chapter 14, the main advantage of the drawRect: method is that it localizes
all of the drawing commands necessary to draw your NSView in a single method. In
practice, this allows you to separate the code in your application that controls layout from
the code that controls drawing. This leads to an application that is cleaner, easier to
maintain, and, in many cases, more efficient.

The drawRect: method can be invoked under a variety of circumstances:

● The NSView draws "itself" the first time that it is displayed in its window.
● If the NSView's window is not buffered, the NSView redraws itself every time the

window is exposed.
● If the NSView is displayed in an NSScrollView, it redraws part of itself whenever

the user makes a new part of it visible by dragging the scrollbar.
● If the user wants to print the NSView, the NSView's drawRect: method is invoked

to perform the appropriate Quartz calls for the given device.
● If the user wants to save the contents of the NSView as a PDF file, the NSView can

generate the PDF file too.

Putting the drawing of an NSView in drawRect: makes redisplay happen in the most
efficient manner possible and lets your view print and create PDF files without requiring
any additional code.

NSView's drawRect: method is designed to be overridden by the programmer. The
drawRect: method in NSView itself does nothing; when you subclass the NSView class,
you must override the do-nothing drawRect: method to handle the drawing for your
custom NSView.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.2 BlackView: An NSView That Paints Itself Black

In this chapter, we'll play with a number of simple, trivial NSView subclasses to learn more about how drawRect: and
Interface Builder work. The first view is BlackView, an NSView whose drawRect: method fills the NSView with
black.

1. Launch Project Builder and choose PB's File New Project menu command.

2. Choose Application Cocoa Application in the New Project Assistant and give your new project the name
"ViewDemo".

3. Double-click the MainMenu.nib file in the Resources group in the Groups & Files pane to launch IB and
display the MainMenu.nib window.

4. Select the NSView class under the Classes tab of IB's Nib File window and subclass NSView by choosing the
Classes Subclass NSView menu command.

5. Change the name of the new subclass from "MyView" to "BlackView".

6. Choose Classes Create Files for BlackView and insert the class files into the ViewDemo project.

7. Back in PB, insert the drawRect: method shown here in bold into BlackView.m:

#import "BlackView.h"
@implementation BlackView

- (void)drawRect:(NSRect)aRect
{
 [[NSColor blackColor] set];
 [NSBezierPath fillRect:aRect];
}
@end

8. Back in IB, resize the empty window titled "Window" so it's about three inches wide and one inch tall. The
exact size isn't important here.

9. Drag a CustomView icon from IB's Cocoa-Containers palette and drop it in the empty window.

10. Type Command-1 and then change the class of the custom NSView to BlackView in the NSView (Custom)
Info window. See Figure 15-1.

11. Resize the BlackView instance so it's about the size shown in the window in Figure 15-1.

Figure 15-1. CustomView changed to BlackView in IB

12. Back in IB, choose File Test Interface to test the ViewDemo interface. The window titled "Window" is
empty - it contains no BlackView.

Now let's take a short diversion to find out a little bit about IB using the system console application Console, which
resides in the /Applications/Utilities folder. The Console application displays technical messages from
Mac OS X, including errors and logged output from NSLog() calls in applications (the same ones that show up in
PB's Run pane when an application is run from within PB).

13. Launch the Console application. In the Console window, you'll see a message like the following one, which
you can also see in Figure 15-2:

2002-03-27 21:34:17.628 Interface Builder[451] Unknown class 'BlackView'
in nib file, using 'NSView' instead.

14. Quit Test Interface mode by typing Command-Q.

Figure 15-2. Console application with logged message about BlackView in IB

This message appears because IB doesn't know about BlackView's implementation - it isn't compiled into the version
of IB that you're using. Note that you can create your own custom palettes (e.g., a palette including a compiled
BlackView similar to CustomView) in IB if you wish; consult the IB documentation to learn how to do this.

To see BlackView work, we first need to build the application in PB.

15. Back in PB, build and run ViewDemo with BlackView, saving all files when prompted.

16. This time you'll see the BlackView instance in all its glory, as shown in the window in Figure 15-3.

Figure 15-3. BlackView appears on-screen after the BlackView class has been compiled in PB

17. Quit ViewDemo.

That's all there is to it! BlackView's drawRect: method is invoked automatically when the window is first drawn on
the screen; there's no need to explicitly invoke the drawRect: method yourself. (In fact, you're never supposed to
invoke drawRect: directly.) Likewise, if we tried to print this window, BlackView's drawRect: method would
automatically be invoked to generate the commands necessary to send the image to the printer.

To stress this point, let's modify the window by adding a few more BlackViews, as shown in the window on the left in
Figure 15-4. You can do this with the help of IB's Edit Copy to and Edit Paste menu commands.

Figure 15-4. Window with four BlackViews in IB (left); running ViewDemo program (right)

18. Back in IB, resize the BlackView so that it's only about one-fourth of its original size.

19. With the BlackView selected, choose IB's Edit Copy to and then Edit Paste menu commands.

20. Choose Edit Paste twice more so you have a total of four BlackViews, then move and resize them in the
window (see the window on the left in Figure 15-4).

21. Back in PB, build and run ViewDemo again. Quit after admiring your creation.

When we run ViewDemo this time, we get a window that looks like the one on the right in Figure 15-4. Cocoa
automatically calls the drawRect: method for each of the four BlackView instances when the window is displayed.
Note that although there are four instances and four sets of instance variables (inherited from NSView), there is only
one copy of drawRect: in memory.

Note how quickly ViewDemo was built in PB this time. The reason is that no code had to be compiled. The only
changes made were in the MainMenu.nib file - PB only had to swap out the old nib for this new one to create the
new ViewDemo.app application bundle. This works because nib files are not bundled into Mac OS executables -
they are stored as separate resources (files) in the application bundle

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.3 A Closer Look at the NSView Class

NSView is one of Cocoa's most complicated classes. If you understand how it works, you can
control the display of information on the computer's screen and have it updated quickly and
efficiently.

15.3.1 NSView Coordinate Systems

Each Cocoa NSView has its own coordinate system that can be rotated, scaled, or otherwise
transformed from the coordinate system of its superview.

Each NSView also has the following two methods that describe its position in its window:

- (NSRect)frame

Returns the NSView's frame in the coordinate system of its superview

- (NSRect)bounds

Returns the NSView's frame (i.e., bounds) in its own coordinate system

When you change an NSView's coordinate system, its bounds instance variable is
automatically updated to reflect the change, while its frame instance variable remains the
same. The NSView class provides the following methods for inspecting and changing an
NSView's coordinate system:

- (float)boundsRotation

Returns a floating-point number for the angle, in degrees, between an NSView's
coordinate system and the coordinate system of its superview.

- (float)frameRotation

Returns the angle of the NSView's frame relative to its superview's coordinate system.
A value of 0 means that the NSView has not been rotated (but its coordinate system
may have been).

- (BOOL)isRotatedFromBase

Returns TRUE if an NSView or any of its ancestors have been rotated from the

window coordinate system.

- (BOOL)isRotatedOrScaledFromBase

Returns TRUE if an NSView or any of its ancestors have been rotated or scaled from
the window coordinate system.

- (void)rotateByAngle:(NSCoord)angle

Rotates an NSView's coordinate system around the NSView's origin (0,0). This method
rotates the contents of the view but not the view itself.

- (void)scaleUnitSquareToSize:(NSSize)newUnitSize

Scales an NSView's coordinate system. For example, a newUnitSize of (2,2) doubles
the size of units along the respective axis.

- (void)translateOriginToPoint:(NSPoint)aPoint

Translates an NSView's coordinate system so that its origin has the coordinates (aPoint.
x, aPoint.y).

- (void)rotateByAngle:(float)angle

Rotates an NSView's coordinate system so that angle is the angle between the
NSView's coordinate system and its frame.

You can convert a point or rectangle from one NSView's coordinate system to or from another
NSView's coordinate system with one of these methods:

- (NSPoint)convertPoint:(NSPoint)aPoint fromView:(NSView *)aView
- (NSPoint)convertPoint:(NSPoint)aPoint toView:(NSView *)aView
- (NSSize)convertSize:(NSSize)aSize fromView:(NSView *)aView
- (NSSize)convertSize:(NSSize)aSize toView:(NSView *)aView
- (NSRect)convertRect:(NSRect)aRect fromView:(NSView *)aView
- (NSRect)convertRect:(NSRect)aRect toView:(NSView *)aView

If you supply nil as an argument to any of the methods that take aView as an argument, the
methods will convert to or from window coordinates.

There are many, many more methods - consult the NSView documentation for further
information.

15.3.2 Moving and Resizing Views

You can move the position of an NSView relative to its superview's coordinate system. This
usually has the effect of changing where the NSView draws itself inside the window.

The following methods control the placement and movement of an NSView:

- (void)setFrameOrigin:(NSPoint)newOrigin

Moves the origin of the NSView's frame to a precise position in its superview's
coordinate system

- (void)setFrameRotation:(float)angle

Rotates an NSView's frame to an absolute position

- (void)setFrame:(NSRect)frameRect

Repositions and resizes an NSView within its superview's coordinate system

- (void)setFrameSize:(NSSize)newSize

Resizes an NSView by an absolute amount in its superview's coordinate system

15.3.3 Flipping

Views can be flipped, which means that the ordinal value of the y coordinate increases as it
moves down the screen. Flipped coordinate systems are used for building subclasses of
NSView such as the NSText object, which naturally move down from the upper-right corner.
For these views, it's easy to calculate the y coordinate by multiplying a line number by a
constant.

The following NSView method deals with flipped views:

- (BOOL)isFlipped

NSView returns NO. NSView subclasses that need a flipped Y axis should override
this method and return YES, in which case the Cocoa view mechanism will adjust
accordingly.

Most application frameworks available for Microsoft Windows, X
Windows, and Mac OS 9 operate only with flipped coordinate
systems. If you are coming from these platforms, you may think it's
easier to simply flip the coordinate systems of the views that you
create, rather than flipping your thinking. Resist this temptation!
Many functions and NSView methods do not work the way that you
would expect them to if the NSView's coordinates are flipped.
Flipped NSViews also seem to exercise some bugs within the
AppKit. If you can avoid using flipped NSViews, we recommend
that you do so.

15.3.4 The NSView Hierarchy

All views are arranged in a hierarchy. Each NSView has exactly one superview and can have
zero to many subviews:

- (NSView *)ancestorSharedWithView:(NSView *)aView

Searches up the hierarchy for an NSView that is in common with the receiving
NSView and aView.

- (id)viewWithTag:(int)aTag

Finds the nearest descendant NSView of the receiver that has aTag as its tag.

- (BOOL)isDescendantOf:(NSView *)aView

Returns whether or not the receiver is a descendant of aView.

- (void)setPostsFrameChangedNotification:(BOOL)flag

If flag is YES, this method causes the view to post a FrameChangedNotification
when its frame changes. This is used with the NSScrollView to automatically update
the size of the scrollbars. This notification is on by default; you should turn it off only
for very special, temporary circumstances.

- (void)replaceSubview:(NSView *)oldView with:(NSView *)newView

If oldView is a subview of the receiver, it is removed from the NSView hierarchy and
replaced with newView.

- (NSArray *)subviews

Returns an NSArray containing the NSView's subviews. Do not modify this list
directly.

- (NSView *)superview

Returns the NSView's superview.

15.3.5 Opaque and Nonrectangular Views

Cocoa represents views by rectangular regions on the screen, but nothing forces the drawing
that an NSView does to be rectangular. A drawing can be an odd shape, and it can even have
holes through which you can see what's behind it.

Each NSView specifies whether or not it completely fills its frame when it is drawn (so that
you can't see anything behind the NSView). If your NSView has holes in it or does not
completely set every pixel within its frame, isOpaque should return NO. It is important to set
this return value properly to reflect what your NSView does; this minimizes the amount of
redrawing that needs to be done when your views are redisplayed.

These methods help you manage opaqueness:

- (BOOL)isOpaque

NSView returns NO by default. If your NSView subclass completely fills its bounds
when it is drawn, you should should override this method and return YES.

- (NSView *)opaqueAncestor

Returns the NSView's nearest ancestor NSView that is opaque. If the NSView is
opaque, it will return self.

When the mouse is clicked in your NSView, the NSWindow object uses the hitTest: method
to determine whether or not the NSView was clicked. You can override this method if parts of
your NSView should not be mouse-sensitive - for example, if your NSView displays itself as a
triangle.

- (NSView *)hitTest:(NSPoint)aPoint

Returns the lowest subview in the view hierarchy of NSViews that contains aPoint.
The NSWindow class uses this method to determine in which NSView a mouseclick
occurs. You can subclass this method to make some parts of your NSView "invisible"

to the mouse.

15.3.6 Controlling Display and Redisplay

Two methods are used in display:

- (void)display

Causes the NSView to redisplay itself and its subviews by locking focus on itself and
calling displayRect:. You should almost never call this method yourself; call
setNeedsDisplay: instead.

- (void)displayRect:(NSRect)rect

Redisplays the portion of the NSView and its subviews specified by the argument rect.

Most Cocoa views need to redisplay themselves when something about their internal state
changes. For example, an NSTextField object needs to redisplay itself when the contents of the
NSTextField change. If you write your own custom NSView, you may override these methods
to improve drawing performance under certain circumstances.

The following methods are used for managing the redisplay of views:

- (void)displayIfNeeded

Displays the receiving NSView and any of its subviews that need to be redisplayed.

- (BOOL)needsDisplay

Returns YES if the receiving view needs to be redisplayed.

- (void)setNeedsDisplay:(BOOL)flag

Tells the NSView that it needs to be redisplayed when flag = YES. Views that need to
be redisplayed are automatically sent a display message each time the NSApplication
class finishes handling an event. Thus, multiple actions that might cause a view to
require displays may result in a single display call's being dispatched, which increases
efficiency.

- (void)setNeedsDisplayInRect:(NSRect)invalidRect

Tells an NSView that a region of itself and its subviews is no longer valid and needs to
be redisplayed. This is used by the NSScrollView class. You can use it to improve

drawing performance if you know that only part of a view needs to be redrawn.

Mac OS X Version 10.1 does not implement optimal redraw
algorithms in the Application Kit. As a result, if you develop an
application under Version 10.1, you will find that your NSView
subclasses end up being displayed and redisplayed far more often
than necessary. Nevertheless, you should still use the needsDisplay/
setNeedsDisplay:/setNeedsDisplayInRect: architecture outlined
above. When Apple addresses the bugs in the AppKit, your
programs will run faster without additional modification.

15.3.7 Resizing

When a window is resized, the NSWindow class automatically sends a resizeSubviews:
method to the NSWindow's content view. The resizeSubviews: method is then passed down
through the view hierarchy, resizing or not resizing the subviews as necessary.

Normally, you control resizing with IB's Autosizing Info dialog. But there are times that you
might want to catch resize events and do something special. Here are the methods used by
Cocoa's resizing machinery:

- (void)resizeSubviewsWithOldSize:(NSSize)oldFrameSize

Informs the NSView's subviews that the NSView's size has been changed from
oldFrameSize.

- (void)setAutoresizesSubviews:(BOOL)flag

Makes an NSView automatically resize its subviews when it is resized.

- (void)setAutoresizingMask:(unsigned int)mask

Controls how an NSView resizes when its superview is resized.

- (void)viewWillStartLiveResize
- (void)viewDidEndLiveResize
- (BOOL)inLiveResize

Control "live resizing," in which the window's contents visibly change as the window
is resized. By informing the view when live resizing is taking place, you can have the
view do a "quick-and-dirty" draw operation during live resizing, and then do an
"expensive-but-clean" draw operation when the live resize is finished.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.4 BarView: An NSView with a Scaled Coordinate System

In this section we'll subclass NSView to create a class called BarView to demonstrate a scaled
coordinate system. A BarView object will display a simple bar graph that draws a graph between the
range to 100, depending on the value of a slider. It will scale its coordinate system and control
redrawing with the appropriate display methods. We'll use the same ViewDemo project we created
for BlackView so that we won't have to go through the project-creation process again.

1. Back in IB, remove all BlackView instances from your ViewDemo window (select them one
by one and type Control-X).

2. Select the NSView class under the Classes tab of IB's Nib File window and subclass NSView
by choosing IB's Classes Subclass NSView menu command.

3. Change the name of the new subclass from "MyView" to "BarView".

4. Drag a CustomView icon from IB's Cocoa-Containers palette and drop it in the empty
window.

5. Type Command-1, then change the class of the CustomView to BarView in the NSView
(Custom) Info panel.

6. Resize the BarView instance, as shown in Figure 15-5.

7. Drag a vertical slider from IB's Cocoa-Other palette and drop it next to the BarView, as
shown in Figure 15-5.

8. With the slider selected, type Command-1 and note that the slider has a default range
(Minimum/Maximum) from 0.0 to 100.0 and a Current setting of 50.0.

9. Change the Current value of the slider to 0.0 in the NSSlider Info panel.

10. Make sure that the Marker Values Only checkbox is not checked so that you can pick any
(float) value between 0 and 100.

11. Make sure that the Continuous checkbox is checked so that the slider updates when you
move it, rather than when you let go.

Your window and slider attributes should now look like those in Figure 15-5.

Figure 15-5. BarView, slider, and slider attributes in IB

12. Select BarView under the Classes tab in the MainMenu.nib window and type Command-1
to see the BarView Attributes.

13. Add the takePercentage: action method to the BarView class in the BarView Class
inspector. (By the way, you cannot select the rectangular BarView instance in the window to
add outlets or action methods because that represents an instance, not the BarView class).

14. Control-drag from the slider to the BarView instance and connect with the takePercentage:
action method.

15. Select BarView under the Classes tab in the MainMenu.nib window again.

16. Choose Classes Create Files for BarView and insert the class files into the ViewDemo
project.

17. Back in PB, insert the lines shown here in bold into BarView.h:

#import <Cocoa/Cocoa.h>

@interface BarView : NSView
{
 float percentage;
}
- (id)initWithFrame:(NSRect)r;
- (BOOL)isOpaque;
- (void)drawRect:(NSRect)aRect;
- (IBAction)takePercentage:(id)sender;
@end

It's not necessary to place declarations of overridden methods (e.g., drawRect:) in the class interface
(.h) file, but it's good programming style because doing so documents that they were overridden.

18. Insert the line shown here in bold into BarView.m:

- (IBAction)takePercentage:(id)sender
{
 [self setPercentage:[sender floatValue]];
}

The takePercentage: method is the action that the slider takes when it's been manipulated. It first
gets the value of the slider using [sender floatValue] and then invokes the setPercentage: method
(shown in the following example) to set the percentage (size) of the on-screen BarView instance.

19. Insert the following four new method implementations into BarView.m:

- (id)initWithFrame:(NSRect)r // Designated initializer
{
 [super initWithFrame:r];
 [self setBoundsSize:NSMakeSize(100.0,1.0)];
 return self;
}

- (BOOL)isOpaque
{
 return YES;
}

- (void)drawRect:(NSRect)aRect
{
 [[NSColor blackColor] set];
 NSRectFill(NSMakeRect(0,0,percentage,1));

 NSDrawWindowBackground(
 NSMakeRect(percentage,0,100-percentage,1));
}

- (void)setPercentage:(float)val
{
 percentage = val;
 [self setNeedsDisplay:YES];
}

The initWithFrame: method in BarView.m invokes the inherited setBoundsSize: method to scale
BarView's drawing coordinates so that width scales 0 to 100 (to match the slider control) and height

scales 0 to 1.0. This makes it very easy for the drawRect: method to draw the bar graph. The
isOpaque method tells the BarView superview(s) that this method is opaque. The drawRect:
method draws a black rectangle from the left of the NSView to the line specified by the variable
percentage, then paints the rest of the NSView with the window background.

The setPercentage: method sets the percentage instance variable and tells the NSView's
superclass that redisplay is needed.

Even though it's not used, the setPercentage: method is included in the class interface so that you
can set the value in the BarView directly from an Objective-C statement in your program, without
having to use an NSControl object such as a slider. When designing classes, you should include
accessor methods for all of the instance variables that a user of your class might want to access or
modify, even if the particular application you are working on does not require those accessor
methods. This improves code reusability.

20. Build and run ViewDemo with BarView. Save all pertinent files when prompted.

21. Drag the slider knob up and the BarView will get wider, as shown in Figure 15-6.

Figure 15-6. Slider controls the width of the BarView

22. Quit ViewDemo.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.5 PolygonView: A Non-Opaque NSView

In this section we'll subclass NSView once again and create a class called PolygonView with some "holes"
in it. It will draw a polygon with a specified number of sides (the range will be from 3 to 20 sides). We will
use the ViewDemo project for a third time.

1. Back in IB with ViewDemo's MainMenu.nib, subclass NSView again by choosing IB's Classes
 Subclass NSView menu command.

2. Change the name of the new subclass from "MyView" to "PolygonView".

3. Select the BarView instance in the window titled "Window", type Command-1, and change the
class of the BarView to PolygonView in the NSView (Custom) Info window.

4. IB will alert you that "This operation will break existing connections" because the PolygonView
does not respond to the takePercentageValue: message. Click OK.

5. Select the slider, type Command-1, and change the slider's Minimum to 3, Maximum to 20, and
Current to 3. Use the Tab key to jump from text field to text field.

6. In the Markers box, change the number of marks to 18 and click the Marker Values Only
checkbox.

7. Select the PolygonView class in the MainMenu.nib window, type Command-1, and then add the
takeNumSidesFrom: action to the PolygonView class in the PolygonView Class Info panel.

8. Connect the slider to the PolygonView instance so that it sends the takeNumSidesFrom: action
message.

9. Select the PolygonView class in the MainMenu.nib window and choose Classes Create
Files for PolygonView. Insert the class files into the ViewDemo project.

10. Back in PB, insert the two lines shown here in bold into PolygonView.h:

#import <Cocoa/Cocoa.h>

@interface PolygonView : NSView
{
 int sides;
}
- (IBAction)takeNumSidesFrom:(id)sender;
- (void)setNumSides:(int)val;
@end

11. Insert the lines shown here in bold into PolygonView.m:

#import "PolygonView.h"

@implementation PolygonView

- (IBAction)takeNumSidesFrom:sender
{
 [self setNumSides:[sender intValue]];
}

- (id)initWithFrame:(NSRect)rect
{
 [super initWithFrame:rect];
 [self setBounds:NSMakeRect(-1,-1,2,2)];
 [self setNumSides:3];
 return self;
}

- (BOOL)isOpaque
{
 return NO;
}

The initFrame: method sets the coordinates for the drawing system to range from (-1,-1) to (1,1). It then
sets the number of sides for the polygon to be 3 and returns the initialized object. The isOpaque method
tells the superview that the PolygonView is not opaque.

12. Insert the following two methods into PolygonView.m:

- (void)setNumSides:(int)val
{
 if (val>2 && sides!=val) {
 sides = val;
 [self setNeedsDisplay:YES];
 }
}

-(void)drawRect:(NSRect)rect
{
 NSBezierPath *shape = [NSBezierPath bezierPath];
 float theta;

 [shape moveToPoint:NSMakePoint(sin(0.0),cos(0.0))];

 // M_PI is a predefined value of PI.
 // M_PI*2.0 is number of radians in a circle.
 // The for() statement below sweeps through each
 // pie-section of the polygon for each side.

 for (theta=0.0;
 theta <= 2*M_PI;

 theta += (M_PI*2.0)/sides) {

 [shape lineToPoint:NSMakePoint(sin(theta),cos(theta))];
 }

 [[NSColor blackColor] set];
 [shape fill];
}

The takeNumSidesFrom: and setNumSides: methods work together to react to slider manipulations and
set the number of sides of the polygon to be displayed. The drawRect: method creates an NSBezierPath
whose outline matches the sides of a polygon, then sets the current color to be black and fills the shape.

Notice that this view doesn't paint the background. That is because the PolygonView is not opaque. It has
holes around the edges of the polygon where you can see the views that are behind it. When the window
displays this view it will notice that the view is not opaque, and the window will first draw the view that is
behind our PolygonView so that the window looks correct.

13. Back in PB, build and run ViewDemo with PolygonView, saving all pertinent files when
prompted.

14. A triangle should appear first (as shown in the window on the left in Figure 15-7), because we set
Current to 3 in IB. Drag the slider knob up and note that the number of sides of the displayed
polygon should change, as shown in the window on the right in Figure 15-7.

Figure 15-7. PolygonView instance with three (left) and eight (right) sides

15. Quit ViewDemo.

15.5.1 Changing the PolygonView's Size

Let's add a second control (another slider) to PolygonView that lets the user change the size of the
polygon. Well do this by changing the size of the PolygonView instance itself. This time we'll insert code
into the PolygonView class files first, then we'll work in IB.

16. Insert the two new method declarations shown here into PolygonView.h:

- (void)setSize:(float)size;
- (IBAction)takeFloatSize:(id)sender;

17. Insert the two new method implementations shown here into PolygonView.m:

- (void)setSize:(float)size
{
 [self setFrameSize:NSMakeSize(size,size)];
 [self setBounds:NSMakeRect(-1,-1,2,2)];
 [self setNeedsDisplay:YES];
}

- (void)takeFloatSize:(id)sender
{
 [self setSize:[sender floatValue]];
}

The setSize: method is sublime. It takes the floating-point parameter size and resizes the PolygonView to
be this size. Remember that this size is expressed in the coordinate system of the containing NSView,
rather than the PolygonView itself (which is scaled from -1 to 1 in each dimension, for easy drawing).
That's fine, but once the PolygonView is resized, it is no longer scaled from -1 to 1 in each dimension, so
we have to set bounds again. Finally, we need to alert the view mechanism that this view needs to be
resized.

Note that the takeFloatSize: method is an action method, so it can be invoked from a slider.

18. Save the PolygonView.h and PolygonView.m class files.

19. Drag the PolygonView.h file icon from PB's Groups & Files pane and drop it in the
MainMenu.nib window in IB. (You can also do this step by choosing Classes Create Files
for PolygonView, but dragging and dropping is more fun).

Before dropping the file icon in the previous step, you should have seen a plus sign (+) appear next to the
cursor, indicating that the class information was about to be added to PolygonView. The reason we did this
was to inform IB about the new takeFloatSize: action method so we can use it in a new connection in IB.

20. Back in IB, make the window a little taller and then drag a horizontal slider from the Cocoa-Other
palette and drop it in the window below PolygonView, as shown in the top-left window in Figure
15-8.

Figure 15-8. PolygonView class with horizontal slider for size in IB (top left); PolygonView instance
draws outside frame (top right) and doesn't properly erase old PolygonViews (bottom)

21. Select the horizontal slider, type Command-1, and set the slider's Minimum to 0, Maximum to 600,
and Current to 100.

22. Connect the horizontal slider to the PolygonView instance so that it sends the takeFloatSize:
message.

23. Back in PB, build and run ViewDemo again. Save all files when prompted.

24. Drag the horizontal slider knob to the right and you'll notice some peculiar behavior, as shown in
the top-right window in Figure 15-8. Then drag the horizontal slider to the left and note even more
peculiar behavior, shown in the window at the bottom of Figure 15-8.

The polygon gets larger and trespasses into territory where it shouldn't! As it gets smaller, it doesn't erase
the old triangles, because they are now outside the view. This whole thing looks terrible and is not the
correct way to handle such a situation. We'll discuss a remedy right away.

25. Quit ViewDemo.

15.5.2 Placing an NSView Inside an NSScrollView

Cocoa's solution to the PolygonView drawing problem is to place it inside another NSView called an
NSScrollView. We first experimented with NSScrollViews back in Chapter 10, with our MathPaper
application. At that time, we used an NSTextView inside the NSScrollView. In this section we'll learn how
to put any NSView into an NSScrollView and how to set up a window so that it can be resized properly.

26. Back in IB, select the PolygonView instance and make it a little smaller by dragging its lower-right
handle up and to the left.

27. Choose IB's Layout Make subviews of Scroll View menu command. Your PolygonView
instance will be surrounded by two scroller areas, as shown in the window on the left in Figure 15-
9. (You may need to reposition the NSScrollView so that it still fits properly in the window.)

Figure 15-9. PolygonView contained in a ScrollView in IB (left) and running (right)

28. Back in PB, build and run ViewDemo again with PolygonView, saving all pertinent files when
prompted.

29. Drag the knob on the horizontal scroller to the right and then to the left.

This time, as you make the PolygonView bigger, the NSScrollView will automatically scale the scroll
knobs to accommodate the change in size, as shown in the window on the right in Figure 15-9. Notice that
the scroll knobs and buttons automatically appear and disappear as needed; they are handled automatically
for you by the Cocoa NSScrollView and NSScroller objects. When you make the PolygonView smaller,
some of the background where the view existed is erased, but it's still not perfect (see Section 15.9 for
more). Best of all, the PolygonView object doesn't know that it is being drawn inside an NSScrollView; we
didn't have to modify any of the code!

The NSScrollView automatically sets the Quartz clipping rectangle so that any attempts to draw outside
the ScrollView are not permitted. This further simplifies the task of writing our own custom views.

30. Quit ViewDemo.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.6 Responding to Events in an NSView

In addition to drawing, the NSView class can also process events (because it's a subclass of the NSResponder
abstract superclass). To receive mouse-down or mouse-up events, all your custom NSView needs to do is
override one of the following event-handling methods (there are others) that are declared in the NSResponder
class:

- (void)mouseDown: (NSEvent *)theEvent
- (void)rightMouseDown: (NSEvent *)theEvent
- (void)mouseUp: (NSEvent *)theEvent
- (void)rightMouseUp: (NSEvent *)theEvent
- (void)mouseDragged: (NSEvent *)theEvent
- (void)rightMouseDragged: (NSEvent *)theEvent

To receive mouse-entered or mouse-exited events, your custom NSView needs to override one of the following
event methods and set up a tracking rectangle - something we will describe later, in Chapter 18.

- (void)mouseEntered: (NSEvent *)theEvent
- (void)mouseExited: (NSEvent *)theEvent

Additionally, if your custom NSView is made the first responder of its containing window, it will receive the
following keyboard and mouse events:

- (void)keyDown: (NSEvent *)theEvent
- (void)keyUp: (NSEvent *)theEvent
- (void)mouseMoved: (NSEvent *)theEvent

mouseMoved: events must be turned on explicitly. We will discuss this topic in
Chapter 18.

In the remainder of this section, we'll show you how to receive and interpret mouse-related events and how to
detect whether or not a point is within a polygon.

15.6.1 Getting a Mouse-Down Event

Overriding an event method can be as simple as adding a single method to your PolygonView class definition.
Determining whether a mouseclick is inside or outside a polygon, a process called hit detection, is a bit more
complicated. Fortunately, the NSBezierPath object that we use to draw the polygon will also take care of hit
detection. We just need to keep the object intact, rather than letting it be autoreleased.

The following modifications will change the PolygonView class so that it has a list of colors for drawing the
polygon. Each time you click the polygon, it will be redisplayed in a different color. If you click outside the
polygon, an alert panel will be displayed instead.

1. Back in PB, insert the three lines shown here in bold into PolygonView.h:

#import <Cocoa/Cocoa.h>

@interface PolygonView : NSView
{
 int sides;
 NSBezierPath *shape;
 NSMutableArray *colors;
 int colorNum;
}
- (IBAction)takeNumSidesFrom:(id)sender;
- (void)setNumSides:(int)val;

- (void)setSize:(float)size;
- (IBAction)takeFloatSize:(id)sender;
@end

The shape instance variable will replace the local variable with the same name in the drawRect: method in
our previous PolygonView example, so that we can perform hit detection. The colors array will be used to
keep track of the list of colors, while colorNum will track the current color. The latter two instance variables
need to be set up.

2. Insert the six lines shown here in bold into the initWithFrame: method in PolygonView.m:

- initWithFrame:(NSRect)rect
{
 [super initWithFrame:rect];
 [self setBounds:NSMakeRect(-1,-1,2,2)];
 [self setNumSides:3];

 colors = [[NSMutableArray alloc] init];

 [colors addObject:[NSColor blackColor]];
 [colors addObject:[NSColor blueColor]];
 [colors addObject:[NSColor redColor]];
 [colors addObject:[NSColor greenColor]];
 [colors addObject:[NSColor whiteColor]];

 return self;
}

3. Replace the drawRect: method in PolygonView.m with the new version that follows:

-(void)drawRect:(NSRect)rect
{
 float theta;

 if (shape) { // New
 [shape release];
 shape = nil;

 }

 shape = [[NSBezierPath bezierPath] retain]; // New

 [shape moveToPoint:NSMakePoint(sin(0.0),cos(0.0))];

 // M_PI is a predefined value of PI.
 // M_PI*2.0 is number of radians in a circle.
 // The for() statement below sweeps through each
 // pie-section of the polygon for each side.

 for (theta=0.0;
 theta <= 2*M_PI;
 theta += (M_PI*2.0)/sides) {

 [shape lineToPoint:NSMakePoint(sin(theta),cos(theta))];
 }
 [[colors objectAtIndex:colorNum] set]; // New
 [shape fill];
}

These code changes accomplish two things. By retaining the shape variable (as an instance variable rather
than as a local variable), we assure that it will not be freed and will be available to perform hit detection. The
second change causes the polygon to be drawn in the currently selected color, rather than always in black.

Finally, we need to implement the mouseDown: event:

4. Insert the following mouseDown: method into PolygonView.m:

- (void)mouseDown:(NSEvent *)theEvent
{
 NSPoint loc = [self convertPoint:
 [theEvent locationInWindow] fromView:nil];

 if ([shape containsPoint:loc]) {
 colorNum = (colorNum+1) % [colors count];
 [self setNeedsDisplay:YES];
 }
 else {
 NSRunAlertPanel([self description],
 @"You missed the shape!",nil,nil,nil);
 }
}

This mouseDown: method is passed a pointer to the theEvent object and sends the object the
locationInWindow message to find out the point (loc) where the mouseDown: event took place. The
returned NSPoint is then converted from NSWindow coordinates to the NSView coordinates using the
convertPoint:fromView: method.

We next invoke the NSBezierPath method called containsPoint:, which returns YES if the passed point (loc)
is inside the path and NO of it is not. If the point is within the path, we increment colorNum to the next color
(mod [colors count]), where [colors count] returns the number of colors in the colors array. If the event is
not inside the path, we use the NSRunAlertPanel() function to display an alert panel.

The NSRunAlertPanel() function takes five mandatory arguments: the title for the alert panel, the text,
and the text of up to three buttons. If the second argument is a format string, you can provide additional
arguments after the fifth argument. In this example, the title of the alert panel is the Objective-C description
string for the PolygonView itself, provided using the NSObject-inherited description method.

5. Build and run ViewDemo with PolygonView. Save all pertinent files when prompted.

6. Click the mouse inside the polygon, and it will change color. Click the mouse outside the polygon (but
in the PolygonView), and you will see an alert panel, as shown in Figure 15-10.

Figure 15-10. Clicking outside the polygon causes an NSAlertPanel to be displayed

7. Quit ViewDemo.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.7 Autosizing Multiple Views in a Window

Most windows that contain scrollers should be resizable. In Chapter 10, we showed how to
set up an NSScrollView so that it would resize when its containing window was resized.
Recall that we set the Autosizing attributes for the NSScrollView in IB's Size Info dialog.
That was easy to do for our MathPaper application because there was only one view - the
NSScrollView - that covered the window's content area. With the ViewDemo window,
however, handling window resizing requires a little more thought because there are
multiple view objects. Let's first see what the current situation is.

1. Back in IB with PolygonView, choose the File Test Interface menu command.

2. Resize the window up and to the left. Note that the view objects in the window
don't change size and thus become obscured when the window is small, as shown in
the window on the left in Figure 15-11.

Figure 15-11. Problems with resizing in ViewDemo

3. Now resize the window down and to the right, and note that the objects still don't
change size or position relative to the lower-left corner. The result is ugly, as shown
in the window on the right in Figure 15-11.

4. Quit Test Interface mode by typing Command-Q.

5. Select the NSScrollView/PolygonView instance and type Command-3 to bring up
IB's Size Info dialog with the Autosizing feature.

6. Click the lines in the inner Autosizing square so that the four springs appear, as
shown on the bottom right in Figure 15-12.

Figure 15-12. Setting up the autosizing for the widgets in the PolygonView demo

7. Choose IB's File Test Interface menu command again and note that the
NSScrollView resizes properly but eventually covers the vertical slider - obviously
not what we want.

8. Quit Test Interface mode by typing Command-Q.

Note how wonderful IB is for testing interfaces! We'll use Test Interface mode again
shortly.

Clearly, the NSScrollView should stretch in two dimensions when the window is stretched
- we have that working now. The vertical slider, on the other hand, should stick to the
righthand side of the window and grow only when the window is resized vertically. The
horizontal slider should stick to the bottom of the window and grow only when the window
is stretched horizontally. If we were using other frameworks, implementing these various
resizing operations would be a real pain. But with Cocoa, it's easy: simply set Autosizing
attributes in IB's Size Info dialog. This is basic visual programming in Cocoa.

In the Autosizing square, the horizontal springs are for horizontal resizes while the vertical
springs are for vertical ones. The inside square is for stretching, while the outside square is
for anchoring. A spring in the inside box indicates that the selected object should stretch
when it is resized, while a line indicates that it should stay a fixed size. A line on the
outside box indicates that the distance between the object and the side of the window

should remain fixed if possible; a spring indicates that it should be resizable.

9. Still in IB, select the horizontal slider and click the lines in the associated
Autosizing square so that the springs appear, as shown on the bottom left in Figure
15-12.

10. Now select the vertical slider and click the lines in the associated Autosizing square
so that the springs appear, as shown on the top right in Figure 15-12. Choose IB's
File Test Interface menu command one more time and resize the window.
Note that the views all resize properly (e.g., the sliders grow), as shown in Figure
15-13.

Figure 15-13. Autosizing works when testing the interface in IB

11. Quit Test Interface mode by typing Command-Q.

The one remaining problem with resizing has to do not with stretching, but with shrinking.
If you make the window too small, you'll end up with junk. To prevent this from
happening, you can set a minimum size for the window in the Window's Size inspector (see
Section 15.9).

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.8 Summary

In this chapter, we learned a lot more about the NSView class (in particular, the drawRect:
method) and a lot about resizing. NSView is such an important class that we devoted an
entire chapter to it. In the next chapter, we'll start building our final major application,
GraphPaper, which has a window that graphs equations. We'll use a lot of what we learned
in this chapter to build GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 15. Drawing in a Rectangle: More Fun with Cocoa Views

15.9 Exercises

1. Change the color of the BlackView instance to the one with RGB values (0.5, 0.0,
0.5). Start by launching PB and searching for blackColor in the Find pane.
After that, use a function other than NSRectFill() to display something in the
view.

2. Revise the BarView instance so that the bar goes up and down instead of right and
left. Change the vertical slider attributes so that the bar can only have an integral
height in the range 0 to 10.

3. Take care of the PolygonView example problem that occurs when the window is
resized very small by setting a minimum size for the window.

4. Figure out why the PolygonView doesn't always erase the old polygon that is
drawn in the NSScrollView when it is made smaller. Fix the error. (Hint: The bug
is closely related to the fact that the error manifests itself only when the
PolygonView is being made smaller.)

5. Insert text labels for the two sliders in the PolygonView example and make sure
that the text behaves appropriately (no resize, attached to sliders). Then change the
horizontal slider to a vertical one and make sure all the resizing and connections
work properly.

6. Build a new application with a window containing two overlapping views and
several sliders. Connect sliders to the views and write code so that the user can
change the RGB values and alpha channel of each view.

Book: Building Cocoa Applications: A Step-by-Step Guide

Part IV: GraphPaper: A Multithreaded, Mouse-
Tracking Application

Part IV, Chapter 16 through Chapter 21, focuses on building our last major
application, called GraphPaper. Given a range and step, GraphPaper will
graph a mathematical function in color and use mouseovers to identify
graph points. We also embed in GraphPaper many of the standard features
of commercial Mac OS X applications, such as services, copy and paste,
and the use of the Mac OS X preferences database.

● Chapter 16
● Chapter 17
● Chapter 18
● Chapter 19
● Chapter 20
● Chapter 21

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 16. GraphPaper: A Multithreaded Application
with a Display List

In this chapter, we'll use the Evaluator back end that we built in Chapter 10 as the basis for
an application that graphs single-valued functions. By the end of the chapter, the menu bar
and main window of the application will look like those shown in Figure 16-1.

Figure 16-1. The GraphPaper application

In the process of developing this program, we'll learn more about the drawRect: method,
see how to construct a complicated image out of many individual pieces, and learn a little
bit about threads.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.1 GraphPaper's Design

Conceptually, our program to graph a function will contain four main parts, as described in
the list that follows.

Interface

Lets the user specify the function and graph parameters, and start and stop the
graphing process

Pair generator

Takes the graph parameters set by the user and generates pairs of (x,y) points to be
plotted

Graph builder

Takes the pairs from the pair generator and builds the graph's data structure

Graph displayer

Takes the data structure and displays it on the screen

16.1.1 The Interface

We'll build GraphPaper's interface with Interface Builder (of course!). The interface will
consist of a Cocoa NSForm object containing several text fields ("xmin", "ymax", etc., as
shown in Figure 16-1), a button (labeled "Graph") to start the graphing process, and a
custom NSView called the GraphView. The GraphView object will be the overall
controller of the GraphPaper application.

16.1.2 Connecting to the Back End

When GraphPaper starts up, a GraphView object will be instantiated. The GraphView
object will then start up a single copy of the Evaluator program (as MathPaper did in
Chapter 11). When the user clicks the Graph button in GraphPaper's main window, the
GraphView object will first check to make sure that all of the graph parameters make
sense. It will then start up a second task (called a thread) that will send pairs of numeric
algebraic expressions to Evaluator for processing. Each of these numeric algebraic pairs
corresponds to an (x,y) pair.

Because Evaluator doesn't know how to process variables, GraphView will substitute the
value of the variable x for the letter "x" for every point that it graphs before it sends it to
Evaluator. That's what we mean when we say "numeric" algebraic pairs. For example,
suppose the user wants to graph the following equation:

y(x) = 2*x + 1

over the range of 0 to 10 with a step of 1. GraphView's subsidiary thread will send the
following sequence of 11 pairs to Evaluator:

0, 2*0+1
1, 2*1+1
2, 2*2+1
...
10, 2*10+1

Evaluator, in turn, will evaluate each of these expressions and send them back in a format
like this:

0, 1
1, 3
2, 5
...
10, 21

The GraphView object will also "watch" for the results from Evaluator and incorporate
them into a data structure called a display list. The display list that GraphView will use is a
Cocoa NSMutableArray object, which will contain an array (list) of objects. Each object in
this list will know how to respond to two methods: bounds and stroke. We will have to
implement these methods for each class whose members we want to put into the display
list.

When an object in the display list receives the bounds message, the object returns a pointer
to an NSRect structure that describes the object's size and position. When an object in the
display list receives a stroke message, it generates the appropriate Quartz calls to draw
itself.

Initially, we'll have only one kind of object that can be put into the display list, a Segment
object. Each Segment object will be used to represent a line segment of the final plot, from
one (x,y) pair to another. In addition to responding to the bounds and stroke messages, the
Segment class that we'll create will have a special initFrom:to: method for initialization.

16.1.3 Why Use a Display List?

The advantage of using a display list of objects, rather than simply an array of (x,y)
structures, is the following: we can easily add new kinds of objects to be drawn in the on-
screen GraphView by simply creating new classes and inserting instances of those classes
into the display list. For example, we might want to add a title to the graph's background.
With the flexibility of the display list, all we have to do is to create a Title class that
responds to the same bounds and stroke messages. After we create the new class, it's easy
to integrate its instances into the existing display list.

The GraphView class will manage the display list. When a new object is added to the
display list, the GraphView class will indicate that the region occupied by that object needs
to be redrawn. Additional methods that we'll add to the GraphView class will take care of
scaling the GraphView's coordinate system when the view is resized.

The GraphView object also does the actual drawing of the graph, using the drawRect:
method. The drawRect: method will look at the rectangle where it has been requested to
perform drawing and will send a message to the objects in the display list that intersect that
region.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.2 Working with Multiple Threads

GraphPaper is a tricky application because it has to do three things at the same time:

i. Respond to user events.

ii. "Listen" for data from Evaluator and graph it when it arrives.

iii. Send data to Evaluator.

Handling (i) and (ii) at the same time is no problem: we saw how to do that in the
MathPaper application in Chapter 11. The NSApplication object's event loop, which

watches for user events, will also watch for data on a file descriptor[1] using the NSTask,
NSPipe, and NSFileHandle classes. The problem is (iii) - sending data to the Evaluator
process. Doing this concurrently with (i) and (ii) presents a problem in Cocoa that has to do
with the way that operating systems handle pipes.

16.2.1 Unix Pipes and Evaluator

When two programs are connected with a Unix pipe, the operating system allocates a
buffer to address the possibility that the program at the "write end" of the pipe might send
data before the program at the "read end" of the pipe is ready to accept it. Of course, each
pipe buffer is only so big, and thus if the program at the read end of the pipe doesn't read
the data fast enough, the pipe buffer gets filled. If the pipe buffer is filled and the program
that is writing tries to keep sending data down the pipe, that program will be blocked until
the pipe buffer has some empty space.

It is much faster to send data to Evaluator than it is for Evaluator to process the data and
send it back, so it's reasonable to assume that any process sending data to Evaluator
through a pipe will eventually be blocked. In addition, Evaluator will send results data
through another pipe back to the same process from which the data came. That second pipe
can fill up just as easily as the pipe that sends data to Evaluator. This can result in a
deadlock condition, with both pipes filled and both processes blocked, each waiting for the
other to empty the pipe from which it is reading. In our example, the main GraphPaper
process would be blocked because Evaluator couldn't accept any more data, and Evaluator
would be blocked because the GraphPaper application wasn't emptying its pipe either. The
user would see one of those never-ending spinning disks indicating that the GraphPaper
application had hung - a very undesirable result.

One way to solve this problem would be to have GraphPaper and Evaluator work in a lock-

step fashion: GraphPaper could send a single line to Evaluator, then wait for that line to be
returned. Many programmers take this approach, but you shouldn't. Forcing two programs
to run in lock-step invariably makes them both run very slowly, because the operating
system needs to constantly switch between the two of them.

A far better approach is to let the GraphPaper process fill up the pipe and then go on to
other tasks, such as accepting user input and emptying the pipe of data from the Evaluator
process. While GraphPaper may be blocked because the pipe buffer directing data to
Evaluator is full, the operating system will allow the Evaluator process to run. It will run as
fast as it can, processing data from its input and writing the data to its output. The operating
system will allow the Evaluator process to run in blocks, perhaps because its output buffer
is filled, or until it has used up the maximum amount of CPU time that a process may use
before the operating system forces a context switch. The GraphPaper process will then start
up and start reading data returned from Evaluator.

This is the approach we will follow. Because there is no easy way for a process to see if
writing to a pipe will block, our solution is to use a third execution thread - one that has
only the job of sending data to Evaluator. In GraphPaper, we will call this process the
stuffer. When Evaluator gets busy and the pipe buffer gets filled, the stuffer thread blocks.
Because all the stuffer thread does is send data to Evaluator, it doesn't matter if it gets
blocked temporarily, because no blocked process will be waiting for the stuffer.

16.2.2 Threads

Although we could send the data to Evaluator with a completely different process using
another NSTask object, a far more elegant (and efficient) way to do it is with a lightweight
process called a thread. Simply put, a thread is another process that shares the same
program and data space with the program that created it. A thread can access the same
global variables as its creator, but it runs on its own schedule and can lock its own
resources. Threads also have their own stacks, local variables, and, in Cocoa, their own
autorelease pools. If you have a computer with two processors, multiple threads can run at
the same time, each on its own CPU. Threads and multithread programming are an
important part of Cocoa.

The power of threads does not come without a price - it's harder to write a multithreaded
application than to write a single-threaded one, because two processes executing in the
same address space can cause adverse interactions. Programmers must be careful to
anticipate and avoid such interactions - for example, some kinds of global variables must
be locked every time they are used, to prevent accidental modification by another thread.

To see how such an interaction could happen, consider the following simple example.
Suppose a function in a multithreaded program wanted to increment a global variable
called count. In a single-threaded program, you would use an expression like this:

extern int count;

count = count + 1;

This simple increment operation might cause problems in a multithreaded application.
Suppose that one thread read the value of count from memory, but before it could
increment count and write the value back to memory, that thread was suspended and a
second thread started up. Suppose that the second thread also read the value of count
from memory (the same location) and incremented it. The second thread would have read
the old, unincremented value of count from memory and incremented that value.
Regardless of the order in which the threads write their values back to memory, the
resulting value of count will be increased by only 1 (instead of by 2) when both threads
are finished. A bug!

16.2.3 Locking with NSLock

The way around this problem is to use a mutually exclusive (mutex) lock. All programming
environments that provide for multiple threads support some kind of locking system. In
Cocoa, locks are implemented with the NSLock, NSConditionLock, and NSRecursiveLock
Foundation classes.

Using these locking classes is quite simple. To implement an interthread variable called
count, for example, we could create and initialize an NSLock object as follows:

int count = 0;
NSLock *countLock = [[NSLock alloc] init];

Then we could increment the count variable in a thread as follows:

extern int count;
extern NSLock countLock;

[countLock lock];
count++;
[countLock unlock;]

If a second thread attempts to lock the countLock while the first thread has it locked, the
second thread halts execution until the countLock is unlocked. This prevents two threads
from simultaneously trying to access and modify the value of the variable count.

It's obviously more work to write an application that uses multiple threads, and these
applications are also dramatically harder to debug. Applications that are multithreaded also
have somewhat more overhead than nonmultithreaded applications, because of the need to
lock and unlock. For these reasons, the original NeXTSTEP Foundation and Application
Kit were not multithreaded.

In recent years, Apple has worked to make Cocoa multithreaded. Today the Objective-C
runtime and the Foundation and Application Kits are largely multithreaded. But the
multithreaded implementation is not perfect. This means that if you write a multithreaded
application, you should send messages to AppKit objects only from your application's main
thread. Before you write your own multithreaded application, you should also review the
Apple documentation entitled "Overview of Programming Topic: Multithreading." This
document includes several sections, including:

"Threads"

Describes what threads are and how they are used

"Thread Safety"

Describes problems that can arise when using multiple threads

"Locks"

Describes the Cocoa locking system

Don't let this discussion scare you off from writing multithreaded applications. These
applications can be a lot of fun to write and debug. You will find your job considerably
easier, however, if you restrict your use of Cocoa's Application Kit objects to a single
thread - the application's main thread. Although the Application Kit is not fully
multithreaded, that doesn't mean that you shouldn't use multiple threads - just don't use
them to access the defaults system or update the screen. It's not a good idea to make users
of your application wait for CPU-intensive processes to finish when they could be doing
other useful things with your application. For this reason, programmers usually use threads
for performing time-intensive tasks to be done in the background, so they won't interfere
with your main program's handling of events.

16.2.4 Launching Threads with NSThread

Every Mac OS X application has at least one thread, called the main thread. The main
thread is responsible for processing events and performs the primary communication with
the Window Server. If you want to create a second thread, you use the NSThread class.
This class is surprisingly simple; its most important methods are described in Table 16-1.

Table 16-1. Important methods in the NSThread class

Method Purpose

+ (void)detachNewThreadSelector: (SEL)
aSelector toTarget:(id)aTarget
withObject:(id)anArgument

Creates a new thread. The thread starts up
by sending the selector aSelector with the
argument anArgument to the target
aTarget. When the method returns, the
thread dies.

+ (void)exit Terminates the current thread.

+ (BOOL)isMultiThreaded

Returns true if the application is
multithreaded - that is, if the application
has executed the
detachNewThreadSelector:toTarget:
withObject method.

+ (void)sleepUntilDate: (NSDate *)aDate Pauses the current thread until aDate.

Threads can communicate through TCP/IP connections, through NSPipes, by using shared
memory, and by using Cocoa's distributed object system. However, they cannot
communicate via normal Objective-C messages. Although threads share the same address
space, they are truly independent processes - each is separately scheduled and separately
controllable. As such, there is no easy way for one thread to terminate another thread,
although you can have one thread send another thread a message that causes the second
thread to terminate itself when it reads and processes the message.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.3 Building the GraphPaper Application

Now that we've thought about GraphPaper a bit, let's get on with the work of building the application.

16.3.1 Changes to the Evaluator Back End

We need to make one change to Evaluator so that it can recognize more than a single expression on a line - that's
important, because GraphPaper will be sending (x,y) pairs such as (3,2*3+1) to Evaluator. (If we sent only y values,
we might get confused.)

The easy way to do this is to make Evaluator recognize two expressions separated by a comma and terminated with
a newline. Because we built Evaluator with lex and yacc, this change is easy to make and is confined to a single
file, grammar.y.

1. Launch Project Builder, choose File New Project, and double-click "Cocoa Application".

2. Type "GraphPaper" in the Project Name field, hit the Tab key so that the project is saved in the folder ~/
GraphPaper, and then click Finish.

3. Create a second target called Evaluator in the GraphPaper project by choosing PB's Project New
Target menu command, double-clicking Tool at the bottom of the list in the resulting sheet, typing
"Evaluator", and clicking Finish in the second sheet in the project window.

4. Click the Files vertical tab in PB's main window and disclose the Resources group.

5. Activate the Finder, open your ~/MathPaper folder, single-click grammar.y, and then Command-
click rules.l to select these two files. We'll add them to the GraphPaper project in the next step.

6. Drag the two-file selection from the Finder and drop it on the Resources group in PB's Groups & Files pane.
In the resulting sheet, click the checkbox next to "Copy items into destination group's folder", make sure the
Evaluator target is checked, and finally click Add.

7. In PB's editor, insert the six lines shown here in bold into grammar.y:

stat : expr '\n'
{
 printf("%10g\n", $1);
 printingError = 0;
 fflush(stdout);
}
| expr ',' expr '\n'
{
 printf("%g,%g\n", $1, $3);
 printingError = 0;
 fflush(stdout);
}
;

These changes enable us to send to Evaluator two expressions on the same line, separated by a comma. Evaluator

will evaluate each expression and print the results, separated by a comma, on a single line.

8. Select Evaluator in the pop-up menu at the top center of PB's main window, then click the build and run
button to build the Evaluator target. Save grammar.y before building.

9. Test the new running Evaluator process in PB's Run pane by typing the expressions shown here in bold. The
nonbold lines are output from Evaluator.

0,2*0+1
0,1
1,2*1+1
1,3
2,2*2+1
2,5

In this example, we typed the seven-character string "0,2*0+1" and Evaluator responded with "0,1". Note that the
upgraded Evaluator can now handle the numeric algebraic pairs that we plan to send it later.

10. Quit Evaluator by clicking the Stop button in PB's toolbar.

11. Still in PB, add the Evaluator file to the GraphPaper target. To do this, select the GraphPaper target in PB's
pop-up menu, choose Project Add Files, and add Evaluator (in the build folder) to the GraphPaper
target.

16.3.2 Building GraphPaper's Interface

In this section, we will put in place the underlying framework for the GraphPaper application:

1. Using a graphics program, create a 128 x 128 bit application icon for GraphPaper. Our amateurish attempt is
shown here.

You might also create the 48 x 48, 32 x 32, and 16 x 16 icon sizes to use in GraphPaper's .icns file.

2. Launch IconComposer, create a GraphPaper.icns icons file using the icon(s) that you created in the
previous step, and save this file in the ~/GraphPaper project folder.

3. Drag the GraphPaper.icns icon from the Finder and drop it in the Resources section of PB's Groups &
Files pane. Add the GraphPaper.icns file to your GraphPaper target.

4. Click PB's Targets vertical tab and select the GraphPaper target. Click the Application Settings tab and
establish the application settings, as specified in Table 16-2.

Table 16-2. Application settings for GraphPaper

Setting name Value

Executable GraphPaper

Identifier GraphPaper

Type AAPL

Signature GRFP

Version 1.0

Display Name GraphPaper graphical calculator

Get-Info String GraphPaper

Short version GraphPaper

Icon file GraphPaper

Principal class NSApplication

Main nib file MainMenu

5. Single-click the InfoPlist.strings filename (under Resources) in PB's Groups & Files pane. Edit the
copyright messages in PB as appropriate.

6. Double-click the MainMenu.nib filename (under Resources) in PB's Groups & Files pane. IB will
automatically launch and display the default MainMenu.nib interface created by PB.

7. Modify the GraphPaper menus, changing "NewApplication" to "GraphPaper" in four places in the
application menu. Also, rename "MyApp" in the Help menu.

Earlier, we mentioned that a class called GraphView will be used to display function graphs. As you might expect,
GraphView will be a subclass of Cocoa's NSView class. GraphView will need outlets to point to most of the on-
screen objects, as well as action methods to start and stop the graphing.

8. Select NSView in the MainMenu.nib window and choose Classes Subclass NSView to create a new
subclass. Rename the new subclass "GraphView".

9. Type Command-1 to open the GraphView Class Info dialog. Add the following outlets and action methods
to GraphView:

Outlets Action Methods
graphButton graph:
xminCell stopGraph:
xmaxCell
xstepCell
yminCell
ymaxCell
formulaField

10. Choose Classes Create Files for GraphView to create the files for the GraphView class and insert them
into the GraphPaper target.

Next we'll set up GraphPaper's main window, as shown in Figure 16-2.

Figure 16-2. GraphPaper's main window in IB

11. Still in IB, change the main window's title from "Window" to "GraphPaper" in the Window Info dialog.

12. Resize the window so that it is about two inches tall and four inches wide.

13. Drag a CustomView icon from IB's Cocoa-Views palette and drop it in the GraphPaper window. Enlarge it
and position it as shown in Figure 16-2.

14. Change the class of the CustomView to GraphView in the Info dialog.

15. Drag an NSForm object from IB's Cocoa-Views palette and drop it in the right side of the GraphPaper
window.

16. Option-drag the bottom-center handle of the NSForm object to create three more NSFormCells, for a total
of five NSFormCells.

17. Change the labels on the NSFormCells to "xmin", "xmax", "xstep", "ymin", and "ymax", as shown in Figure
16-2. (Use the Tab key to move quickly from one NSFormCell to the next.)

18. Enter the numbers "0.0", "10.0", "0.1", "-1.0", and "1.0" in the five text areas of the NSForm, as shown in
Figure 16-2. We'll use these initial graphing parameters to show the user a good-looking graph at launch
time.

19. Select the entire NSForm matrix and change the text to be right-aligned in the Text Alignment box in the
NSForm Info dialog.

20. Drag a SystemFont Text icon from IB's Cocoa-Views palette and drop it in the lower-left corner of the
GraphPaper window. Change the text to "y(x)=", as shown in Figure 16-2, and make it larger (16 point)
using IB's Font dialog (Command-T). This SystemFont Text icon represents an NSTextField object with
attributes such as uneditable, etc.

21. Drag an NSTextField icon from IB's Cocoa-Views palette and drop it at the right of the "y(x)=" in the
GraphPaper window.

22. Make the text in the NSTextField larger (16 point) using IB's Font dialog. Make the NSTextField wider as
well.

23. Enter a function that has an interesting graph in the white NSTextField. We'll use sin(3*x), which will
produce an interesting graph at launch time.

24. Drag an NSButton object from IB's Cocoa-Views palette and drop it in the GraphPaper window below the
NSForm, as shown in Figure 16-2. Change the title on the NSButton object to "Graph" and make the text
size 16 point. Use the blue guidelines to align the on-screen objects.

25. Connect the seven GraphView outlets to the appropriate on-screen objects. For example, Control-drag from
the GraphView on-screen instance to the Graph button and double-click the graphButton outlet.
Similarly, connect the xmaxCell outlet to the NSFormCell labeled "xmax", the xminCell outlet to the
NSFormCell labeled "xmin", and so on. The formulaField outlet should be connected to the
NSTextField object containing the formula (see the GraphView Connections Info dialog at the left of Figure
16-3). Note that all of the outlet connections are listed at the bottom of the Info dialog.

Figure 16-3. GraphView's outlet connections (left) and Graph button action connection (right)

Later in this chapter, we'll use the graphButton outlet to temporarily change the title on the button from "Graph"
to "Stop" while GraphPaper is drawing a graph.

26. Connect the Graph button to the on-screen GraphView instance. Make it send the graph: action message to
GraphView. See the corresponding NSButton Info dialog in Figure 16-3.

We won't use the stopGraph: action as part of the connections we set up in IB, but we will connect the Graph
button to stopGraph: programmatically. One tiny advantage of adding stopGraph: to the GraphView class in IB is
that IB's Create Files command will create the skeleton code for the method, which saves a bit of typing. Another
advantage is that stopGraph: will be visible while you're working in IB.

27. Save the MainMenu.nib file.

16.3.3 The GraphView Class Interface File

GraphView will be the most complicated class that we build in this book, so we'll go over it in pieces. When
learning any new class, the best place to start is with the interface file. In this case, that file is GraphView.h.

28. Back in PB, insert the lines shown here in bold into GraphView.h:

#import <Cocoa/Cocoa.h>

@interface GraphView : NSView
{
 IBOutlet id formulaField;
 IBOutlet id graphButton;
 IBOutlet id xmaxCell;
 IBOutlet id xminCell;
 IBOutlet id xstepCell;
 IBOutlet id ymaxCell;
 IBOutlet id yminCell;

 // These five variables are the same as those in MathPaper
 NSPipe *toPipe;
 NSPipe *fromPipe;
 NSFileHandle *toEvaluator;
 NSFileHandle *fromEvaluator;
 NSTask *evaluator;

 NSMutableString *fromBuf;

 // These hold the contents of the NSForm
 // double xmin; These three will be public variables
 // double xmax; See the @public directive below
 // double xstep;
 double ymin;
 double ymax;

 // Display list
 NSMutableArray *displayList;
 BOOL first; // Getting the first point?
 NSPoint lastPt; // Last point received

 // Communication with stuffer thread
 BOOL stop_sending;
 BOOL sending;

 BOOL receiving;

@public // For use by stuffer thread

 BOOL graphing;
 char *formula;
 int toFd;
 double xmin, xmax, xstep;
}

- (IBAction)graph:(id)sender;
- (IBAction)stopGraph:(id)sender;
- (void)doStop:(int)which;
- (void)getFormAndScaleView;
- (void)addGraphElement:(id)element;
- (void)clear;
- (void)sendData;
@end

#define STOP_SENDER 1
#define STOP_RECEIVER 2

#define GRAPH_TAG 1
#define AXES_TAG 2
#define LABEL_TAG 3

The first seven id statements declare the outlets we set up and connected in IB. The remaining instance variables
are a little more complicated. Here is a brief description of what they do:

toPipe, fromPipe, toEvaluator, fromEvaluator, evaluator

These variables all have the same functions as the corresponding variables in the MathPaper application.
The MathPaper variables were initially defined in Chapter 11.

fromBuf

It's possible to get a variable amount of information back from Evaluator (including a partial line), so it's
necessary to buffer Evaluator's content. We'll use fromBuf, an NSString instance variable, as the buffer.

The next group of instance variables holds a copy of the graphing parameters that are read from the NSForm. We
use instance variables to store the graphing parameters so that they can be referenced by both the main thread and
the stuffer thread.

xmin, xmax

These two variables determine the horizontal scale of the graph that is drawn.

xstep

This variable determines the step increment in the horizontal (x) direction, used for drawing the graph.

ymin, ymax

These two variables determine the vertical scale of the graph that is drawn.

The next group of variables is used for holding and maintaining the display list:

displayList

This is the actual display list itself, implemented with an NSMutableArray.

first

This boolean variable is set before the first pair is received from Evaluator. It enables the GraphView object
to distinguish between the first pair of coordinates returned and the others.

lastPt

The (x,y) coordinate pair of the last point read from Evaluator. This variable is valid only if first=NO. It
is used to construct the line segment from the last point received to the current point.

The last group of instance variables is used for communication between the main thread and the stuffer thread.
Because of the design of the GraphView class, it won't be necessary to use an NSLock.

stop_sending

When set to YES, this boolean variable forces the stuffer thread to exit.

sending

This boolean variable is set to YES just before the stuffer thread starts up. When the stuffer thread is
finished, it will send the termination code (999) to Evaluator and resets this variable to NO.

receiving

This boolean variable is set to YES just before the stuffer thread starts up. When the main thread receives
the termination code (999) from Evaluator, it resets this variable to NO.

The @public declarations mean that the four instance variables (graphing, formula, etc.) will be visible
everywhere, including to the stuffer thread. We'll discuss the new methods declared in GraphView.h as we
progress through this chapter. Finally, the #define statements set up the tags that we will use for various parts of
the GraphView class.

16.3.4 The GraphView Class Implementation File

Now let's look at the GraphView class implementation code in GraphView.m. The first part of the file requires
another #import directive:

29. Insert the #import directive for the Segment.h file near the beginning of GraphView.m:

#import "GraphView.h"
#import "Segment.h"

@implementation GraphView

The new Segment class will be used to create line segments to draw pieces of the graph. We'll create the Segment
class later in this chapter.

16.3.5 The initWithFrame: Method

The first method we'll discuss in our GraphView class definition is initWithFrame:, the view's designated
initializer. This method will set up the connection to Evaluator and will initialize the displayList and
fromBuf instance variables.

30. Insert the following initWithFrame: method into GraphView.m:

- initWithFrame:(NSRect)frame
{
 NSString *path;
 [super initWithFrame:frame];

 displayList = [[NSMutableArray alloc] init];
 fromBuf = [[NSMutableString alloc] init];

 // What follows is largely from MathPaper
 path = [[NSBundle mainBundle]
 pathForResource:@"Evaluator" ofType:@""];

 if (!path) {
 NSLog(@"%@: Cannot find Evaluator", [self description]);
 }
 else {
 toPipe = [NSPipe pipe];
 fromPipe = [NSPipe pipe];

 toEvaluator = [toPipe fileHandleForWriting];
 fromEvaluator = [fromPipe fileHandleForReading];
 evaluator = [[NSTask alloc] init] retain;
 [evaluator setLaunchPath:path];

 [evaluator setStandardOutput:fromPipe];
 [evaluator setStandardInput:toPipe];
 [evaluator launch];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(gotData:)
 name:NSFileHandleReadCompletionNotification
 object:fromEvaluator];

 [fromEvaluator readInBackgroundAndNotify];
 }

 // The notification below causes the getFormAndScaleView
 // method to be invoked whenever this view is resized
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(getFormAndScaleView)
 name:NSViewFrameDidChangeNotification

 object:self];
 return self;
}

The initWithFrame: method starts by creating the displayList and fromBuf objects. Then it creates
Evaluator, using code that is largely borrowed from MathPaper (see Chapter 11). Finally, it makes GraphView a
receiver of notifications of the NSViewFrameDidChangeNotification type. This notification ensures that the
GraphView will be sent a getFormAndScaleView message if its on-screen view area changes size. By doing this,
we avoid having to make GraphView a delegate of the NSWindow in which it resides.

16.3.6 Implementing the Display List

Recall that the data stuffer thread sends to Evaluator a series of expressions that looks like this (for y=2*x+1):

0, 2*0+1
1, 2*1+1
2, 2*2+1

And Evaluator sends back a series of numbers that looks like this:

0, 1
1, 3
2, 5

The GraphView object uses those pairs of numbers to construct a graph. For this to happen, we must create a
display list - a list of objects that will be used to describe the drawing of a graph.

Our display list will be implemented with a series of objects that adopt a new formal protocol that we'll call
GraphViewElement. We say that an Objective-C class adopts a protocol if it implements all the methods in that
protocol. A formal protocol is a group of methods declared between the @protocol and @end directives. A
formal protocol is adopted in code by listing its name between angle brackets in a class declaration, as we'll see
later.

The methods in our GraphViewElement protocol are described in Table 16-3.

Table 16-3. GraphViewElement protocol methods

Method Purpose

- (int)tag Returns the object's tag (used later)

- (void)setTag:(int)aTag Sets the object's tag

- (void)stroke Draws the object

- (NSRect)bounds Returns the element's bounding box

- (void)setColor:(NSColor *)aColor Sets the element's color

- (NSColor *)color Returns the object's color

The GraphView class will maintain a list of objects that respond to this protocol in the displayList mutable
array. The following GraphView methods will be used to implement this display list functionality:

- (void)clear

Empties the display list

- (void)addGraphElement:(id)element

Adds an element to the display list

- (void)drawRect:(NSRect)aRect

Draws the portion of the GraphView (and the GraphView display list) that appears within aRect

31. Insert the GraphViewElement protocol into the GraphView.h file, after the @end directive that ends the
GraphView interface:

@protocol GraphViewElement
- (int)tag;
- (void)setTag:(int)aTag;
- (void)stroke;
- (NSRect)bounds;
- (void)setColor:(NSColor *)aColor;
- (NSColor *)color;
@end

Placing this protocol definition in the file GraphView.h informs the GraphView class about the
declarations for each of these methods.

32. Insert the following clear method into the GraphView.m file, after the @implementation directive
but before the @end directive:

// Display list maintenance
- (void)clear
{
 [displayList removeAllObjects];
 [self setNeedsDisplay:YES];
}

This clear method removes all of the objects from the displayList and then sends a message to itself
indicating that the entire GraphView needs to be redisplayed.

33. Insert the following addGraphElement: method into GraphView.m:

- (void)addGraphElement:(id)element

{
 [displayList addObject:element];
 [self setNeedsDisplayInRect:[element bounds]];
}

This method adds the element object argument to the display list, then invokes NSView's
setNeedsDisplayInRect: method to tell the GraphView's superclass that the region within the bounding box
of the added element needs to be redrawn.

16.3.7 Scaling the GraphView and the drawRect: Method

As with PolygonView in the previous chapter, GraphView will use Quartz and the NSView architecture to provide
all of the scaling that we need to draw our mathematical functions.

The only thing that our program needs to do is provide information for the required scaling. This will be done by
the method getFormAndScaleView, which will read the current parameters from the on-screen window's form, set
up the GraphView's instance variables, and then scale the GraphView's bounds to the appropriate size.

34. Insert the following getFormAndScaleView method into GraphView.m:

- (void)getFormAndScaleView
{
 xmin = [xminCell doubleValue];
 xmax = [xmaxCell doubleValue];
 xstep = [xstepCell doubleValue];
 ymin = [yminCell doubleValue];
 ymax = [ymaxCell doubleValue];
 [self setBounds:(NSMakeRect(xmin, ymin, xmax-xmin, ymax-ymin))];
 [self setNeedsDisplay:YES];
}

You might think that the drawRect: method, which we show in the next step, would be the workhorse of the
GraphView class. After all, this method does all of the work of actually drawing the graph, right? But in fact, this
method is very simple in GraphView. First it initializes the background color to white, then it determines an
appropriate line width for drawing the graph and sets the current line width accordingly. (The default line width is 1
point, but because we will be rescaling the coordinate system of this NSView to match that of our graph, we need to
calculate the "true" size of 1 point in our scaled coordinate system.) Finally, the drawRect: method iterates through
all of the objects in the display list, determines whether or not they intersect the area that is being redrawn, and
draws them if they do.

35. Insert the following isOpaque and drawRect: methods into GraphView.m:

-(BOOL)isOpaque { return YES; } // Because GraphView is opaque

-(void)drawRect:(NSRect)rect
{
 id obj=nil;
 NSEnumerator *en;
 NSSize sz;

 [[NSColor whiteColor] set];
 NSRectFill(rect);

 sz = [self convertSize:NSMakeSize(1,1) fromView:nil];

 [NSBezierPath setDefaultLineWidth:MAX(sz.width,sz.height)];

 en = [displayList objectEnumerator];
 while (obj = [en nextObject]) {
 if (NSIntersectsRect(rect,[obj bounds])) {
 [obj stroke];
 }
 }
}

Note that for the first time we are using the drawRect: argument rect for more than simply drawing a rectangle:
we use it to determine the intersection of GraphView and the object (line segment) to be drawn. The drawRect:
method that we constructed for the PolygonView class in the previous chapter drew the entire polygon every time
the method was invoked. That was okay because drawing the polygon involved very few drawing operations, but
when drawing complex images, it's wasteful to redraw the entire image - especially if you need to redraw only a
tiny sliver of the image.

We'll use drawRect:'s rect argument to help us determine which part of the screen to redraw. rect is passed as
an argument to the Cocoa function NSIntersectsRect(), which provides a handy way to determine if rect
and the new area to be drawn intersect.

NSIntersectsRect() is one of the many Cocoa utility rectangle functions. Similar functions will tell you if
one rectangle contains another rectangle or a specified point, or if two rectangles are the same. The function
NSUnionRect() will compute the smallest rectangle large enough to contain two other rectangles, while the
function NSIntersectionRect() will compute the region of overlap.

That's it for the drawRect: method. This simple method is not only optimized to redraw the absolute minimum
amount of the graph that's ever required; it will also handle printing, faxing, and generating PDF files.

16.3.8 The Data Stuffer Methods

The part of GraphView that sets up and uses the data stuffer thread consists of the following four methods:

- (void)graph:(id)sender

Sets up global variables and starts the data stuffer thread.

- (void)stopGraph:(id)sender

Lets a user interrupt the graph currently being drawn.

- (void)sendData

The data stuffer method that will be executed in a separate thread by the NSThread class.

- (void)doStop:(int)which

The common logic for stopping the graph and resetting the GUI. This method is invoked regardless of
whether the graph stops normally or by user intervention.

36. Insert the lines shown here in bold into the graph: action method in GraphView.m:

- (IBAction)graph:(id)sender
{
 // Set instance variables from the form
 [self getFormAndScaleView];

 // Check the parameters of the graph
 if (xmax < xmin || ymax < ymin) {
 NSRunAlertPanel(nil, @"Invalid min/max combination",
 @"OK", nil, nil);
 return;
 }

 if (xstep <= 0) {
 NSRunAlertPanel(0, @"The step size must be positive",
 @"OK", nil, nil);
 return;
 }

 [self clear];

 first = YES;
 stop_sending = NO;
 sending = YES;
 receiving = YES;

 [graphButton setTitle:@"Stop"];
 [graphButton setAction:@selector(stopGraph:)];

 [NSThread detachNewThreadSelector:@selector(sendData)
 toTarget:self
 withObject:nil];
}

The graph: action method first validates the values entered by the user for the graphing parameters xmin, xmax,
ymin, ymax, and xstep. If these values are not acceptable, an alert panel is displayed and the method returns.

If the values are acceptable, the display list is cleared and the state variables are initialized. The statement
first=YES sets the first instance variable so that the method that builds the graph will know that a new graph is
being created. The statement stop_sending=NO resets the instance variable that is used to control the stuffer
thread. The sending=YES and receiving=YES statements set toggles that will be used in the doStop: and
gotData: methods described a bit later.

The setTitle: message changes the title of the on-screen button from "Graph" to "Stop". The related statement that
follows changes the action method associated with the button from graph: to stopGraph:. If the user clicks the
button when its title is "Stop", the stopGraph: message is sent to the GraphView. This is the way to rewire (change
the connection in) an application while it is running. You can't do that in IB.

The last line in the graph: action method sends a message to the NSThread class to detach the stuffer thread.
Although we haven't seen it yet, the thread starts up with the sendData message being sent to the same GraphView
object that was previously running. The trick here, of course, is that the sendData method executes simultaneously
with the rest of the GraphView object.

37. Insert the following sendData method into GraphView.m:

- (void)sendData

{
 NSAutoreleasePool *threadPool = [[NSAutoreleasePool alloc] init];
 NSString *formula;
 double x;
 int i;

 formula = [formulaField stringValue];

 for (x=xmin; stop_sending==NO && x<=xmax; x+=xstep) {

 NSMutableString *fsend =
 [NSMutableString stringWithString:@"x,"];
 NSString *xString = [NSString stringWithFormat:@"%g",x];

 [fsend appendString:formula];
 [fsend appendString:@"\n"];

 // Now go through the formula and change every 'x' to a '%g'

 for (i=[fsend length]-1; i>=0; i--) {
 if ([fsend characterAtIndex:i] == 'x') {
 [fsend replaceCharactersInRange:NSMakeRange(i,1)
 withString:xString];
 }
 }

 // Send this to the other side
 [toEvaluator writeData:
 [fsend dataUsingEncoding:NSASCIIStringEncoding
 allowLossyConversion:YES]];
 }

 // Now send through the termination code
 [toEvaluator writeData:[@"999\n"
 dataUsingEncoding:NSASCIIStringEncoding
 allowLossyConversion:YES]];
 [self doStop:STOP_SENDER];

 // Release the pool before the thread exits
 [threadPool release];
}

The sendData method implements the entire stuffer thread, so it is understandably complicated (we hope that you'll
find it understandable as well!). The first thing this thread does is set up its own NSAutoreleasePool. Each thread
must have its own autorelease pool: it would do no good to have one thread's releasing another thread's data!

After the autorelease pool is set up, the sendData method makes a copy of the formula that is presently in the
GraphView's formulaField. It then sets up a loop that will step the variable x from xmin to xmax by xstep
(recall that these instance variables were set up by the message [self getFormAndScaleView] in the graph:
method. Each time through the loop, the method creates a new NSMutableString that contains the formula that is to
be solved. The x variables are then replaced with the current value of x. This algebraic formula is then sent to
Evaluator.

When the loop finishes, the data stuffer sends the number 999 to Evaluator. This number is used as a flag to indicate
that no more data is coming through the pipe. The procedure that constructs the graph will look for a 999 on a line

by itself and will use that flag as its way of knowing that the graph is finished. The specific digits 999 really don't
matter: what's important is that Evaluator is sent a line of data with one expression and no comma.

When the whole process is finished, the doStop: method is invoked with the argument STOP_SENDER to indicate
that the stuffer has finished. Finally, the autorelease pool is released, which causes all of the temporary strings that
were created to be freed.

16.3.9 Stopping a Running Graph

The stopGraph: method stops a running graph. It is invoked when the user clicks the Stop button ("Stop" replaces
"Graph" as the button's title only when a graph is being drawn).

38. Insert the line shown here in bold into the stopGraph: method in GraphView.m:

- (IBAction)stopGraph:(id)sender
{
 stop_sending = YES;
}

As part of its main loop, the data stuffer monitors the status of the stop_sending Boolean variable. When this
variable is set to YES, the data stuffer immediately stops what it is doing and sends the termination code 999 to
Evaluator.

The doStop: method is invoked twice, once when the stuffer stops sending, and again when Evaluator receives the
stuffer's termination code, which is the last line that the stuffer sends prior to terminating.

39. Insert the following doStop: method into GraphView.m:

- (void)doStop:(int)which
{
 switch (which) {
 case STOP_SENDER:
 sending = NO;
 break;
 case STOP_RECEIVER:
 receiving = NO;
 break;
 }

 if (sending==NO && receiving==NO) { // Reinitialize
 [graphButton setTitle:@"Graph"];
 [graphButton setAction:@selector(graph:)];
 [graphButton setEnabled:YES];
 }

 if (sending==NO && receiving==YES) { // Wait for results data
 [graphButton setEnabled:FALSE];
 [graphButton setTitle:@"Waiting..."];
 }
 if (sending==YES && receiving==NO) { // A problem
 NSLog(@"Synchronization error");
 }
}

This doStop: method controls the on-screen Graph button. When the user first clicks the Graph button, its label
changes from "Graph" to "Stop". Pressing the button when it is labeled "Stop" causes the stop_sending flag to
be set, as discussed earlier. But after the stuffer flag has finished sending its data, neither "Graph" nor "Stop" is
really an appropriate setting for this button. Instead, there is a third mode: the button displays "Waiting . . . " and is
disabled. At this point, the application is simply waiting for Evaluator to process all of the information that it has
been sent and to return the calculated results.

16.3.10 The Graph Displayer

Now it's time to implement the method that receives data from Evaluator and constructs line segments that make up
the graph.

40. Insert the following gotData: method into GraphView.m:

- (void)gotData:(NSNotification *)not
{
 NSData *data;
 NSString *str;
 NSPoint pt;
 int num;
 NSString *line=0;

 data = [[not userInfo]
 objectForKey:NSFileHandleNotificationDataItem];
 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 // Add the data to the end of the text buffer
 [fromBuf appendString:str];

 // Register to get the notification again
 [fromEvaluator readInBackgroundAndNotify];

 // Now, process all complete lines we have
 do {
 NSRange r1;

 r1 = [fromBuf rangeOfString:@"\n"];
 if (r1.length<1) break;

 line = [fromBuf substringToIndex:r1.location];
 [fromBuf
 replaceCharactersInRange:NSMakeRange(0,r1.location+1)
 withString:@""];

 num = sscanf([line cString], "%f, %f", &pt.x, &pt.y);
 if (num!=2) {
 [self doStop:STOP_RECEIVER];
 return;
 }

 if (!first && !stop_sending) {
 Segment *seg = [[[Segment alloc]
 initFrom:lastPt to:pt] autorelease];
 [seg setTag:GRAPH_TAG];

 [self addGraphElement:seg];
 }

 first = NO; // No longer first
 lastPt = pt; // Remember this point

 } while (line);
 // End of data
}

This method is invoked whenever new data is available. Its main complication is that it needs to break the block of
data it receives into individual lines. Each of these lines is then used to create a Segment object, and these objects
are then added to the display list with the addGraphElement: method.

The reason for the line-by-line buffering is that Evaluator might send more than one line of data to the GraphView
object before it is scheduled to read the data (because the data is being generated by a different execution thread). It
might also send an incomplete line, due to blocking on the pipe. The GraphView object therefore needs to buffer the
data that it receives and then read it out one line at a time.

Note that the addBufToGraph: method ignores the data it receives if the stop_sending instance variable is set
to YES. This means that after the user clicks the Stop button all of the rest of the data in the pipeline is ignored,
giving the application a nice snappy response time.

The gotData: method uses the sscanf() function to turn the line of text from Evaluator back into numbers. If
num!=2, then there were not two numbers separated by a comma to read; in this case, the method invokes the
stopGraph: method and the graph stops.

If this data pair is the first data pair, the execution drops down to the last four lines. These lines set the instance
variables lastx and lasty to be the coordinates of the current point, then unsets the first variable and returns.

On all data pairs other than the first, the middle section of this method gets executed. This conditional code first
creates a Segment object (described in the next section) with endpoints at (lastPt.x, lastPt.y) and (pt.
x, pt.y) and adds this segment to the display list.

This method also sets the tag of the segment to GRAPH_TAG. We'll use tags later to distinguish between different
objects stored inside the display list.

16.3.11 The Segment Class

Although a GraphView object constructs graphs, it relies upon a Segment object to actually draw the lines that
make up the graph. The GraphView object invokes two Segment instance methods:

bounds

Returns a rectangle bounding the Segment's line

stroke

Causes the Segment object to draw itself in the current view

By using a separate class that interacts with the GraphView class according to a well-defined protocol, we open up
the possibility of adding new objects to the graph with very little work. To make the Segment class even more
general, it supports a tag internal variable (which we'll use later, when we add more types of objects).

41. Choose PB's File New File command, select Cocoa Objective-C class, and click Next.

42. Name the file Segment.m. Leave the checkbox checked so that Segment.h is also created in the ~/
GraphPaper folder, GraphPaper project, and GraphPaper target. Click Finish.

43. Edit the Segment.h file so that it looks like the following:

#import <Cocoa/Cocoa.h>
#import "GraphView.h"

@interface Segment:NSObject <GraphViewElement>
{
 NSPoint start;
 NSPoint end;
 NSColor *color;
 int tag;
}

- initFrom:(NSPoint)start to:(NSPoint)end;
- (NSPoint) segmentCenter;
@end

The @interface directive with the angle brackets (<>) tells the Objective-C compiler that Segment is a subclass
of NSObject that follows the GraphViewElement protocol, and thus that it must implement the six methods
declared previously in that protocol.

44. Edit the Segment.m file so that it looks like the following:

#import "Segment.h"

@implementation Segment

- initFrom:(NSPoint)theStart to:(NSPoint)theEnd
{
 [super init]; // Init the NSObject superclass

 start = theStart;
 end = theEnd;
 color = [[NSColor blackColor] retain];
 return self;
}

- (void)dealloc
{
 [color release]; // Release what you retain
 [super dealloc]; // and dealloc the superclass
}

// Accessor methods
- (int)tag { return tag; }
- (void)setTag:(int)aTag
{
 tag = aTag;

}

- (void)setColor:(NSColor *)aColor
{
 [color release];
 color = [aColor retain];
}

- (NSColor *)color
{
 return color;
}

// Methods that derive information for the caller
- (NSRect)bounds
{
 return NSMakeRect(MIN(start.x,end.x),
 MIN(start.y,end.y),
 fabs(start.x-end.x) + FLT_MIN,
 fabs(start.y-end.y) + FLT_MIN);
}

- (NSPoint)segmentCenter
{
 return NSMakePoint((start.x+end.x)/2.0, (start.y+end.y)/2.0);
}

- (void)stroke
{
 [color set];
 [NSBezierPath strokeLineFromPoint:start toPoint:end];
}

@end

The Segment class implementation is fairly straightforward. Notice that there is no bounds instance variable;
instead, we calculate each segment's bounding box on demand from other instance variables and return what was
calculated. This is known as data hiding - an object's internal representation of data does not have to be the same
representation that is used by its accessor methods.

We use FLT_MIN in the bounds method so that lines that are vertical or horizontal will still have a width or height
that is non-zero. FLT_MIN is the smallest floating-point number that the IEEE floating-point package can
represent. By adding FLT_MIN to the calculated width and height, we guarantee that these values will not be zero.
If they are computed to be a number that is larger than FLT_MIN - for example, the number 5 - adding FLT_MIN
will have no significant effect, as it's a very tiny value.

16.3.12 Testing GraphPaper

Now that we've built the interface, made the connections, and implemented all the classes, we're finally ready to
make and test GraphPaper.

45. Build and run GraphPaper. Save all files first.

46. With GraphPaper running, click the Graph button. You'll see the graph of y=sin(3*x) over the x range

[0,10], as shown in Figure 16-4. Because xstep=0.1, 100 line segments (steps) made up the graph of
sin(3*x).

Figure 16-4. Graphing sin(3*x) with GraphPaper

47. Change the value of xstep to 0.001 and click the Graph button again. This time, the graph of sin
(3*x) will be displayed slowly, and the Graph button title will change to "Stop" and then a dimmed
"Waiting . . . ". Try clicking the Stop button.

48. Try graphing another function, such as x*cos(4*x), with a different step and ranges.

49. Try entering a negative value for xstep and click the Graph button. An alert should show up. Try entering
min values greater than the max values, and you should get another alert.

50. Quit GraphPaper.

In Chapter 18, we'll clean up the GraphPaper application a bit and make it respond properly to resizing, and we'll
arrange for the (x,y) coordinates of each point to be displayed as the mouse is moved over the graph. We'll finish off
this chapter by showing how to add two different objects to GraphPaper's display list.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.4 Extending the Display List

GraphView's display list and drawRect: method can easily be extended to draw objects other than graphs in the on-
screen GraphView. In this section, we'll add axes and labels to the graph.

16.4.1 Adding Axes

Adding X and Y axes to GraphView is quite simple, because we already have the Segment class to draw the line. All
we need to do to draw the axes is to create a new method that draws the axes and then arrange for it to be invoked by
GraphView's graph: method.

1. Insert the following addAxesFrom:to: method declaration into GraphView.h:

- (void)addAxesFrom:(NSPoint)pt1 to:(NSPoint)pt2;

2. Insert the following addAxesFrom:to: method implementation into GraphView.m:

- (void)addAxesFrom:(NSPoint)pt1 to:(NSPoint)pt2
{
 Segment *seg = [[[Segment alloc] initFrom:pt1 to:pt2] autorelease];
 [seg setTag:AXES_TAG];
 [self addGraphElement:seg];
}

3. Insert the lines shown here in bold into the graph: method in GraphView.m:

- (IBAction)graph:(id)sender
{
 ...
 [self clear];

 // Display the axes
 [self addAxesFrom:NSMakePoint(xmin,0.0) to:NSMakePoint(xmax,0.0)];
 [self addAxesFrom:NSMakePoint(0.0,ymin) to:NSMakePoint(0.0,ymax)];
...

4. Build and run GraphPaper. Save all files first.

5. To see both the axes in GraphPaper, enter the values shown in Figure 16-5.

Figure 16-5. GraphPaper with axes

6. Try other functions and graphing parameters, and then Quit GraphPaper.

When the first data point comes through, the new statements in the graph: method create two Segment objects that
correspond to the X and Y axes. The tags for each of these objects are set to 1. The axis lines are added to the display
list, and then the graph is displayed. The window in Figure 16-5 shows what the graph looks like with axes. We set the
tag to AXES_TAG so that we can distinguish these segments from the segments used to draw the graph itself. This
distinction will be important in Chapter 18, when we want to make the graph segments (but not the axes) sensitive to
mouseovers.

16.4.2 Adding Labeling

In addition to axes, we can add a function label fairly easily by creating a Label class that responds to the same bounds
and stroke methods as the Segment class. Because Objective-C uses dynamic binding - where messages are resolved
when they are sent, rather than when the program is compiled - we won't need to make any changes to GraphView's
drawRect: method. Label objects will be stored in the display list, along with the Segment objects. Label objects must
have their own initialization methods, however, because line segments and text labels need to be set up in different
ways.

As we'll see, drawing text also represents an interesting problem: the Quartz fonts assume that they are drawing on a
grid with a square scale - that is, they assume that the scale on the X axis is the same as the scale on the Y axis. It's
possible to override this assumption by providing a two-dimensional transformation matrix when creating the font.
However, it's easier to change the scale of the GraphView while the label is being drawn and then change it back after.
Such manipulations are actually remarkably easy, and they can be done in a manner that is completely transparent to
the GraphView object itself.

7. Create new Label class files (Label.h, Label.m), as you did earlier for the Segment class files, and add
them to the GraphPaper project. (Recall how we did it before: choose PB's File New File command, select
Cocoa Objective-C class, etc.).

8. Make the code in the Label.h file look like the following code:

#import <Cocoa/Cocoa.h>
#import "GraphView.h"

@interface Label:NSObject <GraphViewElement>
{

 NSRect bounds;
 NSMutableAttributedString *text;
 NSColor *color;

 int tag;
 NSFont *font;
 NSMutableDictionary *dict;
}

- initRect:(NSRect)bounds text:(NSString *)aText size:(float)aSize;
@end

Notice that this interface is very similar to the interface used by Segment. In particular, it adopts the
GraphViewElement protocol. The main difference is that the two objects use different initialization methods, as of
course they must. The Label class implementation is a bit more complicated than the Segment class implementation. It
starts out with the initRect:text:size: method, which we show in the next step.

9. Make the code in the Label.m file look like the following (incomplete) code:

#import "Label.h"

@implementation Label
- initRect:(NSRect)aBounds text:(NSString *)aText size:(float)aSize
{
 [super init];
 bounds = aBounds;

 font = [NSFont fontWithName:@"Times-Roman" size:aSize];
 dict = [[NSMutableDictionary alloc] init];
 [dict setObject:font forKey:NSFontAttributeName];

 text = [[NSMutableAttributedString alloc]
 initWithString:aText attributes:dict];
 [self setColor:[NSColor blackColor]];
 return self;
}

This initRect:text:size: method sets the bounds of the Label object. It then creates an NSMutableAttributedString that
will draw centered text in Times Roman in the requested point size.

Because the Label class uses the alloc method to create the NSMutableDictionary and the NSMutableAttributedString,
these objects must be released when the Label object itself is freed. This is done by the dealloc method.

10. Insert the following dealloc method into Label.m:

- (void)dealloc
{
 [dict release]
 [text release];
 [super dealloc];
}

The following setColor:, bounds, tag, and setTag: accessor methods provide access to these values of the Label class
from outside. Notice that the Label class's implementation of setColor: is completely different from the Segment
class's. In particular, Label's setColor: method adds the color to the attribute dictionary and then reapplies the attribute
to the attributed string. Then, because of a bug in the AppKit (present in Cocoa 10.1), this implementation reapplies the
NSCenterTextAlignment to the string.

This is an example of a case where the structure of the AppKit makes it easy to work
around some bugs or limitations in the existing Cocoa release.

11. Insert the following five methods into Label.m:

- (NSRect)bounds { return bounds;}
- (int)tag { return tag;}
- (void)setTag:(int)aTag { tag=aTag;}

- (void)setColor:(NSColor *)aColor
{
 [dict setObject:aColor forKey:NSForegroundColorAttributeName];
 [text setAttributes:dict range:NSMakeRange(0,[text length])];
 // Now reapply the alignment because of a Cocoa bug
 [text setAlignment:NSCenterTextAlignment
 range:NSMakeRange(0,[text length])];
}

- (NSColor *)color {return color;}

Finally, the Label class implements a stroke method to generate the Quartz commands necessary to display the label.

12. Insert the following stroke method and @end directive into Label.m:

// This works, but it requires a subview
- (void)stroke
{

 NSView *fv = [NSView focusView];
 NSView *tempView;

 tempView = [[NSView alloc] initWithFrame:bounds];

 [fv addSubview:tempView];

 // Scale the tempView to screen coordinates
 [tempView setBounds:
 [tempView convertRect:[self bounds] toView:nil]];

 [tempView lockFocus];
 [color set];
 [text drawInRect:[tempView bounds]];
 [tempView unlockFocus];
 [tempView removeFromSuperviewWithoutNeedingDisplay];
}

@end

This method is pretty wacky, and we had hoped to replace it with a better one before this book was published. The
problem here is that the GraphView usually has a nonsquare transformation, but Quartz provides few mechanisms for
drawing fonts with nonsquare transformations. To get around this limitation, this method first creates a new NSView in
the area in the GraphView where the label is to be drawn. This view is then scaled so that its coordinate system
matches that of the NSWindow it contains. We then lock focus on this view, draw the label, unlock the focus, and
remove the view from the superview using a method that prevents the superview from being redisplayed. This works

and is reasonably fast, but it would be better to use the NSAffineTransformation and NSGraphicsContext classes. So
far, though, we haven't been able to get them to work. If you figure out how, please send us email, and we'll post the
solution on the O'Reilly web site.

16.4.3 Using the Label Class

To use this new class, we'll need to make several changes to GraphView.m. First we need to import the new Label
class into the GraphView class, and then we need to make another modification to the graph: method.

13. Insert the #import statement shown here in bold into GraphView.m:

#import "GraphView.h"
#import "Segment.h"
#import "Label.h"

@implementation GraphView

14. Insert the new statements shown here in bold into the graph: method in GraphView.m:

...
// Add the axes
[self addAxesFrom:NSMakePoint(xmin,0.0) to:NSMakePoint(xmax,0.0)];
[self addAxesFrom:NSMakePoint(0.0,ymin) to:NSMakePoint(0.0,ymax)];

// Add a label
{
 Label *label = [[Label alloc]
 initRect:NSMakeRect(xmin, ymin, xmax-xmin, (ymax-ymin)*.2)
 text:[formulaField stringValue]
 size:24.0];

 [label autorelease];
 [label setTag:LABEL_TAG];
 [self addGraphElement:label];
}
...

Notice that we inserted a new block of code so that we can have a local variable called label that is limited in scope
to these statements.

15. Build and run GraphPaper. Save all files first.

16. Enter a function and ranges, as shown in Figure 16-1 at the beginning of this chapter, and then click the Graph
button to see the function label.

17. Play around with GraphPaper and then quit.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.5 Summary

Wow, we've really done a lot in this chapter! In the first half of the chapter, we got a taste
of multithreaded programming in Mach by creating an application with two execution
threads - one that sends data to a back end program and another that reads the resulting
values. In the second half, we learned how to draw a picture by building a display list of
objects, each of which knows how to draw itself.

In the next chapter, we'll see how GraphView's modular design makes it easy to add new
functionality to the class. In particular, we'll see how to add color by subclassing the
GraphView class and overriding some of its methods.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.6 Exercises

1. What happens if the autorelease message is not sent to the Segment and Label
objects? Will the program still work if the message is taken out?

2. Make the GraphView draw the graph when a formula is typed and the user hits
Return (instead of clicking the Graph button).

3. Instead of being implemented as a formal protocol, GraphViewElement could have
been implemented as an abstract parent class of both Segment and Label. (We
didn't implement the classes with a common parent class because we wanted to
show how to create and implement a protocol.) If we had used a common parent
class, we could have factored the common code out of the Segment and Label
classes and put it into the parent class.

Reimplement the Segment and Label classes with a common parent class. Explain
the advantages and disadvantages of this approach versus the formal protocol
approach. Is one of the approaches better than the other? Why or why not? Can you
imagine a situation in which you would want to use both a common parent class
and a protocol in the same application?

4. When the width of the bounds does not equal the height, the line drawing is not
square - that is, horizontal lines will not have the same thickness as vertical lines.
Explain why this is so, and reimplement GraphView and Segment so that drawing
is always square. (Hint: Try this using the same coordinate-transformation
technique that the Label class uses.)

5. Our GraphView class needs a dealloc method that properly releases all of the
allocated and retained objects, as well as providing other general-purpose cleanup.
Write it. Will your dealloc method ever be called in the GraphPaper application? If
not, why write it?

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 16. GraphPaper: A Multithreaded Application with a Display List

16.7 References

Multithreading:

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/Multithreading/index.html

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Multithreading/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/Multithreading/index.html

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 17. Color

Although we have used color in most of our examples, we have used it in only a cursory
fashion - just black and white. That might have been fine back in the 1980s and early
1990s, when lots of people still had monochrome displays, but these days almost every
computer has a full-color display. As you might expect, Cocoa's Quartz drawing
environment makes drawing in color beautiful and easy.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 17. Color

17.1 Colors and Color Objects

Cocoa colors have two components: color and alpha. Color is the way that the color looks
when it is displayed on an empty background. Alpha is a measure of the color's
transparency - it tells Quartz how to blend a color with the colors already present in the
background when the color is displayed. Alpha is measured on a scale from 0.0 to 1.0. An
alpha of 0.0 is completely transparent; an alpha of 1.0 is opaque (nothing shows through
it).

Cocoa enables you to specify the color using several different models, called color spaces.
As with most computer systems, one option is to specify values for the amount of red,
green, and blue (RGB). RGB is an additive color model - the colors are added together like
colored lights (mix them all in equal amounts and you get white). Alternatively, you can
specify a color by specifying a hue, saturation, and brightness (HSB). You can also specify
the amount of cyan, yellow, magenta, and black (CMYK) "inks" to mix at any point.
CMYK is called a subtractive color model because the colors are subtracted from white;
mix them all and you get a muddy brown. CMYK colors are device-dependent.

Cocoa also allows the user to specify colors by name. Apple supplies a predefined set of
names, but other organizations can make color lists available as well. For instance,
Pantone's ColorWeb Pro makes Pantone colors available for Mac OS X. On black-and-
white devices, such as laser printers, colors are automatically mapped to corresponding
shades of gray by the Quartz system.

17.1.1 Colors from a Programmer's Point of View

Internally, Cocoa represents color with the NSColor class. This class provides a large
number of class methods for creating NSColor objects. Mac OS X Version 10.1 provides
the following named colors as NSColor objects:

+ blackColor + darkGrayColor + orangeColor

+ blueColor + grayColor + purpleColor

+ brownColor + greenColor + redColor

+ clearColor + lightGrayColor + whiteColor

+ cyanColor + magentaColor + yellowColor

Cocoa also provides the following class methods for creating colors using one of several
color models:

+ (NSColor *)colorWithCalibratedHue:(float)hue
 saturation:(float)saturation
 brightness:(float)brightness
 alpha:(float)alpha;

+ (NSColor *)colorWithCalibratedRed:(float)red
 green:(float)green
 blue:(float)blue
 alpha:(float)alpha;

+ (NSColor *)colorWithCalibratedWhite:(float)white
 alpha:(float)alpha;

+ (NSColor *)colorWithCatalogName:(NSString *)listName
 colorName:(NSString *)colorName;

+ (NSColor *)colorWithDeviceCyan:(float)cyan
 magenta:(float)magenta
 yellow:(float)yellow
 black:(float)black
 alpha:(float)alpha;

+ (NSColor *)colorWithDeviceHue:(float)hue
 saturation:(float)saturation
 brightness:(float)brightness
 alpha:(float)alpha;

+ (NSColor *)colorWithDeviceRed:(float)red
 green:(float)green
 blue:(float)blue
 alpha:(float)alpha;

+ (NSColor *)colorWithDeviceWhite:(float)white
 alpha:(float)alpha;

Colors can be copied to and from the pasteboard (or clipboard). You can use the instance
methods to learn the components of each color. See the NSColor documentation for details.

17.1.2 Colors from a User's Point of View

Mac OS X gives users a variety of options for choosing colors through a standard interface
called the Colors panel (or dialog), an instance object of the NSColorPanel class. (We'll
use the term "panel" in this chapter in deference to the name of the class.) The Colors panel
enables the user to specify a color (or shade of gray) using any of the color models
mentioned earlier. The panel also lets the user set the amount of alpha (transparency) used
by each color. Figure 17-1 contains the Color Wheel, Color Palettes, and Image Palettes
views of the Colors panel.

Figure 17-1. Saturated green shown in three different panes in the Colors panel

The buttons in the toolbar of the Colors panel change the model that the panel uses to
display colors. If you select a color and then change the color model, you can see how the
same color is represented in the different color models. For example, in the Colors panel on
the left in Figure 17-2, we chose fully saturated green in RGB mode. Then we clicked two
buttons below the toolbar to see the corresponding representations of saturated green in the
CMYK and HSB modes, as shown in the middle and right screen shots in Figure 17-2.
Unfortunately, it's hard to display a good "green" in a monochrome book - you'll have to
play with the Colors panel on a Mac OS X system to get a good feel for it.

Figure 17-2. Saturated green shown in three different color models

The space along the bottom of the Colors panel is a holding area for eight colors. You can
drag a color "chip" from the color well in the lower-left corner of the panel into the holding
area. You can also drag colors directly into applications. Pressing the button with the
magnifying glass icon near the bottom of the Colors panel allows you to steal a color from
anywhere else on the screen. Try it - it's fun!

The Colors panel works closely with another Cocoa class, called the NSColorWell. If you
press the mouse in an NSColorWell instance and drag it away, you'll take a little dab of
color, called a color chip, with you (see Figure 17-3). Every NSColorWell has a color; you
can change its color by dragging a color chip from a different NSColorWell and dropping it
inside.

Figure 17-3. Dragging a color chip from the color well in the Colors panel

17.1.3 Programming with Color

To add color to our GraphPaper application, we need to do two things:

● Give the user a way to specify a color.
● Modify our drawing methods so that color is displayed in the window.

The easiest way to let a user specify a color is by placing an NSColorWell object in your
application. If a user clicks the border of an NSColorWell, the Colors panel is displayed.
The Colors panel is "linked" to the NSColorWell - when you change the color on the panel,
the well's color is automatically changed too.

Both the NSColorPanel object and the NSColorWell object support Cocoa's target/action
paradigm. Normally, they send action messages to their targets when their colors are
changed. But if you send the NSColorWell the setContinuous:TRUE message, it will
send a message to its target over and over as a slider is moved. This lets the user watch the
drawing change color as she moves the Colors panel sliders. The receiver of the action
message from the NSColorWell can find out which color was selected by sending the
NSColorWell a color message, which returns the well's NSColor structure. Sending the set
instance method to an NSColor object causes that color to become the current drawing
color for any NSView.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 17. Color

17.2 Adding Color to GraphPaper

In the remainder of this chapter, we'll add color to our GraphPaper application. To do this, we'll add a
Preferences panel (users refer to it as a Preferences dialog) that will let the user choose three distinct colors
for drawing the graph, the equation, and the axes.

To isolate the parts of the GraphView that deal solely with color, we'll create a GraphView subclass called
ColorGraphView. This way, we won't need to make any changes to the GraphView class itself, yet we can
use all of its functionality. This is called reusability of classes.

The user probably won't want to change the graph's colors every time the GraphPaper application is run, so
we'll put the Preferences panel in its own nib file rather than in MainMenu.nib. That way, the Preferences
panel will be loaded and take up memory only when the user chooses to see it. The ColorGraphView class
will have three NSColor instance variables, to keep track of the colors currently being used.

We'll also set up a new class called PrefController to take care of modifying these instance variables when
the Preferences panel is displayed. If the Preferences panel isn't loaded, the ColorGraphView class will use
reasonable defaults for the color instance variables. In Chapter 21, we'll see how to set the values for these
colors from the Mac OS X defaults database, application- defaults information stored in every user's ~/
Library/Preferences folder. (The application's defaults database was introduced in Chapter 2).

17.2.1 Creating a Preferences Panel

A Preferences panel is a panel that an application provides to let users change preferences and configuration
options. It gives the user an easy way to read the contents of the defaults database for his particular
application and to make modifications. Every configuration or installation option that your program supports
should be settable via the Preferences panel.

Preferences panels can be simple or complex; usually, there is little correlation between the complexity of a
program's Preferences panel and the complexity of the program itself. However, you should try to keep the
number of options in your application's Preferences panel under control. When in doubt, let ease of use be
your guide.

In the upcoming sections, we'll make a simple Preferences panel for setting the colors of the graph, the axes,
and the function in GraphPaper. This panel won't be fully functional, though, because it will be missing the
OK and Revert buttons for saving the Preferences information into the defaults database. We'll add those in
Chapter 21.

First we'll create a Controller class for our application, which will act as a central coordinator of the activity
of the GraphView object and the Preferences panel. Contrast this with the PrefController class, which will
control only the preferences in GraphPaper.

17.2.2 The Controller Class

As with most Cocoa applications, the purpose of GraphPaper's Controller class will be to load nibs and
provide a central means for finding the ids of important objects. It won't be a very complicated class, but it

will be very important.

We'll set up the Controller object so that it is the NSApp delegate. The delegate outlet will make it
possible for any object in our application to get the id of the GraphView instance (pointed to by
graphView) by evaluating the following message:

 [[NSApp delegate] graphView]

Putting accessor methods in classes when you design them is good programming practice. We're just
planning ahead.

To have the Preferences panel in its own nib, we will also need to arrange for the Controller class to load the
nib on demand. We'll use code similar to that we used in previous chapters to load the About box nib on
demand.

1. Open your GraphPaper project in Project Builder and the MainMenu.nib file in IB.

2. Subclass the NSObject class in IB (Classes Subclass NSObject) and rename the new class
"Controller".

3. Add an outlet called graphView to the Controller class in the Controller Info dialog.

4. Add another outlet, called prefController, to the Controller class.

5. Add an action method called showPrefs: to the Controller class.

6. Create the files for the Controller class (Classes Create Files for Controller) and insert the new
class files to the GraphPaper project.

7. Instantiate the Controller class (Classes Instantiate Controller). A new icon labeled "Controller"
will show up in the Instances pane of the MainMenu.nib window.

8. Make the Controller the File's Owner's delegate by Control-dragging from the File's Owner icon to
the Controller icon and double-clicking delegate in the File's Owner Info dialog.

9. Connect the Controller's graphView outlet to the on-screen GraphView instance in GraphPaper's
main window.

10. Insert the @class directive and graphView method declaration shown here in bold into
Controller.h:

#import <Cocoa/Cocoa.h>

@class GraphView;
@interface Controller : NSObject
{
 IBOutlet id graphView;
 IBOutlet id prefController;
}

- (IBAction)showPrefs:(id)sender;
- (GraphView *)graphView;
@end

The @class directive allows the Controller class to declare that it returns an object of the
GraphView type without including the whole GraphView class definition.

11. Insert the lines shown here in bold into Controller.m:

#import "Controller.h"
#import "GraphView.h"

@implementation Controller

- (GraphView *)graphView
{
 return graphView;
}

- (IBAction)showPrefs:(id)sender
{
 if (!prefController) {
 [NSBundle loadNibNamed:@"Preferences.nib" owner:self];
 }
 [[prefController window] makeKeyAndOrderFront:sender];
}

@end

Controller may appear to be a gratuitous class - why not just make the GraphView instance the delegate of
the NSApp object? The answer will become clear as we add more features to the GraphPaper application:
having a separate Controller object will make it easier to add new functionality.

The prefController outlet will be initialized to point to a PrefController object (which will control the
Preferences panel) that we'll create in the next section. The showPrefs: action will be invoked in response to
a user's choosing GraphPaper Preferences and will pass the request along to the PrefController object
through the prefController outlet.

The first time the showPrefs: action method is invoked, it will load Preferences.nib. Every time the
showPrefs: action method is invoked, it asks the prefController for the id of its window and then
exposes the window with the makeKeyAndOrderFront: message.

12. Back in IB, Control-drag from the MainMenu.nib application menu item GraphPaper
Preferences to the Controller instance (see Figure 17-4).

13. Connect the GraphPaper Preferences menu cell to the Controller instance so that it sends the
showPrefs: action message, as shown in Figure 17-4.

Figure 17-4. Connection from GraphPaper's Preferences Menu item to the Controller

14. Save MainMenu.nib and minimize the MainMenu.nib window by clicking its yellow minimize
button (working with two on-screen nibs in IB can be confusing).

17.2.3 Creating the Preferences Nib, Panel, and PrefController

The Preferences panel will be loaded by a PrefController object in response to the user's choosing the
GraphPaper Preferences menu command. In this section we'll set up the nib and create the
PrefController class. These next few steps all refer to the file Preferences.nib, not to MainMenu.
nib.

15. Choose IB's File New command and then choose Cocoa Empty from the resulting
Starting Point panel.

16. Save the new nib module in the Preferences.nib file in GraphPaper's English.lproj
folder and add it to the GraphPaper target.

17. Read (parse) the definition of the Controller class (Classes Read Files) by reading the
declarations in Controller.h. The Controller class should appear as a subclass of the NSObject
class, and thus Preferences.nib should now know about the Controller class.

18. Change the class of Preferences.nib's File's Owner to the Controller class. To do this, select
the File's Owner icon under the Instances tab in the Preferences.nib window, type Command-
1, and then change the class of the File's Owner from NSObject to Controller.

19. Subclass the NSObject class again (Classes Subclass NSObject) and rename the new class
"PrefController".

20. Add these four outlets and two actions to the PrefController class:

Outlets Action Methods

graphColorWell okay:
axesColorWell revert:
labelColorWell
window

Don't worry about the revert: and okay: actions now; we won't use them until Chapter 21.

21. Create the files for the PrefController class (Classes Create Files for PrefController) and insert
the new class files to the GraphPaper project.

22. Instantiate the Controller class (Classes Instantiate PrefController). A new icon labeled
"PrefController" will show up in the Instances pane of the Preferences.nib window.

23. Connect the prefController outlet in the File's Owner (Controller) object to the PrefController
instance in the Preferences.nib window.

24. Set up a Preferences panel in Preferences.nib that looks like the one in Figure 17-5. To do
this, drag a Panel icon from IB's Cocoa-Windows palette and drop it on the desktop. Rename it
"Preferences". Then drag three NSColorWells from the Cocoa-Other palette and three Message Text
icons from the Cocoa-Views palette and drop them all in the new panel. Use IB's blue guidelines and
the Layout Alignment menu command to align these objects. Then choose Layout Group
In Box to get the boundary (Box) and rename it "Colors", as shown in Figure 17-5.

Figure 17-5. GraphPaper's Preferences panel in IB

25. Set the tag of the NSColorWell labeled "Graph" to "1" (make sure you set the tag on the
NSColorWell and not the text label).

26. Set the tag of the NSColorWell labeled "Axes" to "2".

27. Set the tag of the NSColorWell labeled "Label" to "3".

28. Connect each color-well outlet in PrefController to the appropriate NSColorWell object in the
Preferences panel. Be sure that you are connecting to the NSColorWell object and not to the labels!
See Figure 17-6 for the labelColorWell outlet connection.

Figure 17-6. Connecting PrefController outlets to color wells

29. Connect PrefController's window outlet to the Preferences panel's title bar.

30. Save Preferences.nib.

17.2.4 PrefController Class Implementation

A PrefController object will manage the Preferences panel. Following is the implementation of the
awakeFromNib method and the method that it invokes (setUpWell:) to set up each color well. In addition,
the window accessor method is added so the Controller can send a window message to PrefController to get
the id of the Preferences panel to send it the makeKeyAndOrderFront: message.

31. Back in PB, insert the three method declarations shown here in bold into PrefController.h:

#import <Cocoa/Cocoa.h>

@interface PrefController : NSObject
{
 IBOutlet id axesColorWell;
 IBOutlet id graphColorWell;
 IBOutlet id labelColorWell;
 IBOutlet id window;
}
- (IBAction)okay:(id)sender;
- (IBAction)revert:(id)sender;

- (NSWindow *)window;

- (void)setUpWell:(NSColorWell *)well;
- (NSColorWell *)colorWellForTag:(int)aTag;

@end

32. Insert these two #import directives into PrefController.m:

#import "Controller.h"
#import "ColorGraphView.h"

33. Insert the following two method implementations into PrefController.m:

- (NSWindow *)window
{
 return window;
}

- (void)setUpWell:(NSColorWell *)well
{
 id colorGraphView = [[NSApp delegate] graphView] ;

 [well setTarget:colorGraphView];
 [well setAction:@selector(setObjectsToColor:)];
 [well setColor:[colorGraphView colorForTag:[well tag]]];
}

The setUpWell: method arranges for the NSColorWell to send the setObjectsToColor: action message
(described later) directly to the ColorGraphView target object. It gets the ColorGraphView id
(graphView) by sending the graphView accessor message to the Controller (NSApp's delegate). This
allows us to overcome Cocoa's apparent inability to send messages between nibs. In fact, it's easy to send
messages between objects that are in different nibs - you just can't wire it up graphically using IB.

After the NSColorWell's action and target are set, the setUpWell: method goes to the colorGraphView,
asks for the color that is associated with the particular tag, and then sets the NSColorWell to be this color.
We'll implement the colorForTag: method later in this chapter.

34. Insert the following awakeFromNib method implementation into PrefController.m:

- (void)awakeFromNib
{
 [[NSColorPanel sharedColorPanel] setContinuous:YES];

 [self setUpWell:axesColorWell];
 [self setUpWell:labelColorWell];
 [self setUpWell:graphColorWell];
}

The Application Kit uses a single NSColorPanel object for each running application. The method
[NSColorPanel sharedInstance:YES] returns the id of that shared instance; if the Colors panel hasn't been
created yet, it gets created.

PrefController's awakeFromNib method first creates a shared Colors panel, then sets the continuous
flag for the Colors panel. It is necessary to set the continuous flags in both the color well and the Colors
panel if you want a color well to automatically send a message to its target as the color on the Colors panel
is changed. The awakeFromNib method also invokes the setUpWell: method for each of the three color
wells.

Finally, we will add a method that will allow other objects to obtain the id of an NSColorWell on the
Preferences panel by specifying the tag. Because all of the color wells are subviews of the window's content
view, this is easy.

35. Insert the following method implementation for the colorWellForTag: method into
PrefController.m:

-(NSColorWell *)colorWellForTag:(int)aTag
{
 return [[window contentView] viewWithTag:aTag];
}

17.2.5 ColorGraphView

In this section we'll create the ColorGraphView class, which knows how to draw a graph in color and how to
change the colors of the objects in the display list. The ColorGraphView class will have two jobs: managing
the drawing of the graph in color, and changing the colors of objects in the display list when requested.

36. Back in IB, open (or maximize) the MainMenu.nib file if it is not already open. (Make sure that
you are no longer working in Preferences.nib by minimizing it.)

37. Subclass the GraphView class (which itself is a subclass of NSView) in the MainMenu.nib file.
Rename the new class "ColorGraphView".

38. Change the class of the on-screen GraphView instance in GraphPaper's main window to
ColorGraphView in the Info dialog (Command-1).

Changing the class of GraphView to ColorGraphView shouldn't break any of the connections we
made with GraphView. However, if you inadvertently changed the class to one that didn't implement
the graph: action (such as NSView), IB may have broken the Graph button's connection. If this or
any other connection was broken, reconnect it.

39. Add a new action called setObjectsToColor: to ColorGraphView.

Note that because GraphView is ColorGraphView's superclass, its outlets and actions show up as
dimmed, uneditable text in the Info dialog.

40. Create the files for the ColorGraphView class and insert the new class files to the GraphPaper
project.

41. Insert the lines shown here in bold into ColorGraphView.h:

#import <Cocoa/Cocoa.h>
#import "GraphView.h"

@interface ColorGraphView : GraphView
{
 NSColor *axesColor;
 NSColor *graphColor;
 NSColor *labelColor;
}
- (NSColor *)colorForTag:(int)aTag;
- (void)setObjectsToColor:(NSColor *)theColor forTag:(int)aTag;
- (void)addGraphElement:(id)element;
- (IBAction)setObjectsToColor:(id)sender;

@end

The axesColor, graphColor, and labelColor instance variables will store the current colors for the
axes, graph, and label, respectively. The color wells in the Preferences panel will send the
setObjectsToColor: message to tell the ColorGraphView when the user wants to change the color of the
axes, graph, or label (the setObjectsToColor method was referenced in setUpWell: and will be
implemented later). This method, in turn, will invoke the setObjectsToColor:forTag: method, which will
cause ColorGraphView to change the colors of all of the objects in the display list that have a matching tag.
The colorForTag: method returns the color of the particular NSColor that matches the provided tag.

17.2.6 The ColorGraphView Class Implementation

The ColorGraphView implementation isn't very complicated, because most of the work of actually drawing
the graph is done in the GraphView class. The only thing the ColorGraphView class has to manage is the
color of the newly drawn objects on the graph, as well as changing the colors of existing objects when the
user changes a color in one of the color wells in the Colors panel.

42. Insert the following #import directives into ColorGraphView.m:

#import "Segment.h"
#import "Label.h"

The key definitions that we need for color are contained in Cocoa's NSColorWell.h and
NSColorPanel.h files. It's a good idea to look briefly at these files, as well as at NSColor.h, to learn
the basic structures, constants, and methods Cocoa provides for handling color. All of these files can be
viewed using PB's Find pane.

The first two methods in the following ColorGraphView class implementation provide for the basic
mapping between tags and the three color-containing instance variables in ColorGraphView. The
colorForTag: method takes a tag and returns the matching color instance variable. The setObjectsToColor:
forTag: method sets the appropriate instance variable to be the passed-in color. It then goes through the
entire display list, finds all of the elements with matching tags, and sets their colors as well.

43. Insert the following two method implementations into ColorGraphView.m:

- (NSColor *)colorForTag:(int)aTag

{
 switch (aTag) {
 case AXES_TAG: return axesColor;
 case GRAPH_TAG: return graphColor;
 case LABEL_TAG: return labelColor;
 }
 return nil; // no color?
}

- (void)setObjectsToColor:(NSColor *)theColor forTag:(int)aTag
{
 NSEnumerator *en;
 id obj=nil;

 // First set the correct instance variable
 switch (aTag) {
 case AXES_TAG:
 [axesColor release];
 axesColor = [theColor retain];
 break;

 case GRAPH_TAG:
 [graphColor release];
 graphColor = [theColor retain];
 break;

 case LABEL_TAG:
 [labelColor release];
 labelColor = [theColor retain];
 break;
 }

 // Now set the elements in the display list
 en = [displayList objectEnumerator];
 while (obj = [en nextObject]) {
 if ([obj tag]==aTag) {
 [obj setColor:theColor];
 [self setNeedsDisplayInRect:[obj bounds]];
 }
 }
}

When new objects are added to the display list, their colors must be set in accordance with their tags. We
can set the colors quite simply by overriding GraphView's addGraphElement: method. Notice that our
implementation of this method uses the colorForTag: method to find out what the color for the passed-in
element should be.

44. Insert the following addGraphElement: method implementation into ColorGraphView.m:

- (void)addGraphElement:(id)element
{
 // Set the color to match the request

 [element setColor:[self colorForTag:[element tag]]];

 // Add the element to the display list
 [super addGraphElement:element];
}

As this example shows, part of a good class design is being able to easily change or enhance functionality by

subclassing.[1]

These three methods are all that are necessary to display newly drawn graphs in the colors requested by the
user. But if you want to respond to color-change requests from the user, we will need one more method.

17.2.7 Setting the Colors

When the user changes a color using an NSColorWell object, the NSColorWell sends the
setObjectsToColor: action to the ColorGraphView object (the target and action were set up in
PrefController's setUpWell: method). The setObjectsToColor: method in ColorGraphView needs to
change the value of the appropriate color instance variable as well as the elements in the display list. We'll
use the NSColorWell's tag instance variable to figure out which NSColorWell sent the message. (Recall
that we set each color well to have a different tag.)

45. Insert the following setObjectsToColor: method implementation into ColorGraphView.m:

- (IBAction)setObjectsToColor:(id)sender
{
 [self setObjectsToColor:[sender color] forTag:[sender tag]];
}

17.2.8 Setting the Initial Color

There's a problem with the code that we've written so far: if the user tries to make a graph without first
invoking the Preferences panel, nothing will be drawn, because all of the NSColor instance variables for
setting the graph, axes, and label colors will be zero. The logical way to set the initial values for these
instance variables is by overriding the GraphView's initWithFrame: method. For now, we'll just hardcode
in values. In Chapter 21, we'll see how to set these values from the defaults database system.

46. Override GraphView's initWithFrame: method implementation by inserting the following method
into ColorGraphView.m:

- initWithFrame:(NSRect)frame
{
 [super initWithFrame:frame];
 axesColor = [[NSColor lightGrayColor] retain];
 graphColor = [[NSColor blackColor] retain];
 labelColor = [[NSColor darkGrayColor] retain];
 return self;
}

17.2.9 The GraphView, Segment, and Label Classes

We were very careful in the last chapter to build in flexibility when we designed the GraphView, Segment,
and Label classes. Because these classes have proper abstractions, instance variables, and protocols, not a
single line of code in them needs to be changed.

17.2.10 Testing GraphPaper's Color

47. Build and run GraphPaper. Save all files first.

48. Click the Graph button to make a graph with axes and a function label appear.

49. Choose GraphPaper Preferences to make the Preferences panel appear.

50. Click the border of the Graph color well to expose the Colors panel, which will be linked to the color
well you clicked.

51. Try changing the color in the Colors panel. The color of the graph will change immediately (and
continuously, if you drag the Colors panel sliders).

52. Now try changing the colors of the axes and function label. In Figure 17-7, we have changed the
colors of all three items displayed for the function x*cos(x).

Figure 17-7. GraphPaper running with colors chosen via the Preferences panel

53. Quit GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 17. Color

17.3 Summary

In this chapter, we learned that drawing in color with Quartz is nearly as easy as drawing in
black and white. Then we saw how easy it is to improve the functionality of a well-
designed class through subclassing. Finally, we showed another way to use the tag facility
with the display list to change the color attributes for a set of objects.

In the next chapter, we'll learn more about NSViews - specifically, we'll see how to put any
view in a scroller and how to add a pop-up magnification control. We'll also show how to
subclass the ColorGraphView class to handle mouse tracking.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 17. Color

17.4 Exercises

1. Some of the functions that we implement in the PrefController class are provided as
part of the NSWindowController class. Reimplement the PrefController class as a
subclass of NSWindowController, removing any code possible.

2. In our implementation of the GraphPaper application, the PrefController
communicates directly with the GraphView object when the preferences are
changed. This design violates encapsulation between the two class designs and
limits the application to having a maximum of one GraphView object. A better
design would be to have the GraphView object register to receive an
NSDefaultsChangedNotification and use this as a signal to reread the values from
the defaults database. The PrefController would then post an
NSDefaultsChangedNotification when the default values changed. Implement this
design.

3. After you have completed the previous exercise, rewrite the GraphPaper
application so that it uses the multiple-document architecture that we used with
MathPaper.

4. Implement Document Save and Document Load for the multiple-document version
of GraphPaper that you developed in the previous exercise. Your GraphPaper
"document" should include formulae to be graphed, as well as the current color-
well settings.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 18. Tracking the Mouse

We're in the home stretch! In this and the following three chapters, we're going to fill in
many of the standard Mac OS X features that you need to know in order to write
commercial-level Cocoa applications.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 18. Tracking the Mouse

18.1 Tracking the Mouse

Today's users are so demanding! A few years ago you could write an application that
would just sit there and wait for you to click a mouse button or press a key, but these days
users expect your application to be always prepared to respond. When a user moves the
mouse over something in an application's window, if there is some way that your
application can possibly convey information, the user expects it to happen.

What kind of information are we talking about? For example, if a user mouses over (i.e.,
lets the cursor hover over) the toolbar icons in the Mail application or the Colors panel, he
will expect to get feedback about what clicking those icons will do. This is an example of
Cocoa tool tips - something that is so simple to set with Interface Builder that we haven't
even bothered showing you how to do it. Can we arrange for even more sophisticated
mouseover behavior within GraphPaper? Of course we can, and in this chapter we'll show
you how!

18.1.1 Tracking Rectangles

Until now, we've thought of Cocoa events as being in two categories: mouse events and
keyboard events (although there are periodic and other types of events as well). Another
way of classifying events is according to the type of programmatic gyrations that you have
to go through in order to receive them.

The simplest events to program are those that require no setup; you merely subclass
NSView and implement the corresponding event methods to receive the events. Some of
the methods that handle these simple events are:

- mouseDown: (NSEvent *)theEvent
- mouseUp: (NSEvent *)theEvent
- mouseDragged: (NSEvent *)theEvent
- rightMouseDown: (NSEvent *)theEvent
- rightMouseUp: (NSEvent *)theEvent
- rightMouseDragged: (NSEvent *)theEvent

A second group of mouse events involves the responder chain. Usually, your NSView
subclass receives these events by making itself a first responder. This can happen
automatically if the user clicks the mouse in your NSView and your NSView responds
YES to the acceptsFirstResponder: message. The responder-chain events include
keyboard events as well as events that have to deal with simple mouse motion. Some of the
methods that handle these first responder events are:

- keyDown: (NSEvent *)theEvent
- keyUp: (NSEvent *)theEvent
- flagsChanged: (NSEvent *)theEvent

The last group of events has to do with tracking rectangles, rectangular regions within
windows that track the mouse cursor. You can arrange to have messages sent to an object
whenever a tracking rectangle is entered or exited (no click) by the mouse. Some of the
methods that handle these tracking events are:

- mouseMoved: (NSEvent *)theEvent
- mouseEntered: (NSEvent *)theEvent
- mouseExited: (NSEvent *)theEvent

To set up a tracking rectangle, send the addTrackingRect:owner:userData:
assumeInside: message to an NSWindow object:

- (NSTrackingRectTag)addTrackingRect: (NSRect)aRect
 owner: (id)anObject
 userData: (void *)userData
 assumeInside: (BOOL)insideFlag

These arguments are described in Table 18-1.

Table 18-1. Method arguments of NSTrackingRectTag

Argument Meaning

addTrackingRect:
A pointer to the tracking rectangle in the NSWindow's coordinate
system. The tracking rectangle does not change if the NSWindow
is resized.

owner:

The object that will be sent mouseEntered: and mouseExited:
messages when the mouse moves in or out of the tracking
rectangle. Normally the owner will be the NSView itself, but it can
be any object that responds to mouseEntered: and mouseExited:
messages.

userData:
Data that is provided in the NSEvent object with the
mouseEntered: or mouseExited: events.

assumeInside:

Set this flag to indicate whether you think the mouse cursor is
initially inside or outside the tracking rectangle. If this flag is NO,
the mouseEntered: event will be sent the first time the cursor
moves into the tracking rectangle. If this flag is YES, the first
tracking event sent will be a mouseExited: event, when the cursor
leaves the tracking rectangle.

Tracking rectangles are actually handled by windows, not by views. Unfortunately, you
normally want to manage and use tracking rectangles from within views. Cocoa meets you
halfway in this pursuit - for example, tracking rectangles are created by sending messages
to NSViews. Nevertheless, the fact that tracking rectangles are managed by windows
results in some weirdness:

● If you change your NSView's frame, you need to remove the old tracking rectangle
and create a new one.

● An NSView receives mouseMoved: events only when it is the NSWindow's first
responder.

● There is no default tracking rectangle. If you don't set a tracking rectangle, you
won't get mouseEntered: and mouseExited: events.

If your only reason for using a tracking rectangle is to give your NSView subclass a
custom cursor, don't use a tracking rectangle; use NSView's addCursorRect:cursor:
method instead.

18.1.2 Accepting Mouse-Moved Events

Each window maintains an internal flag called acceptsMouseMovedEvents that
determines whether the Window Server will send it mouse-moved events. The reason for
this, once again, is efficiency - most applications simply don't need to know every time the
mouse moves. The default, therefore, is not to send these events. If you set the
acceptsMouseMovedEvents flag, you'll get the events regardless of whether your
application is the active application. That's useful, but it can slow down your entire
computer, so be judicious in your use of mouse-moved events.

To receive mouse-moved events from an NSWindow object called aWindow, send
aWindow the following message:

[aWindow setAcceptsMouseMovedEvents:YES]

When you don't need these events anymore, send the following message:

[aWindow setAcceptsMouseMovedEvents:NO]

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 18. Tracking the Mouse

18.2 Adding Mouse Tracking to GraphPaper

Now we know enough to add mouse tracking to GraphPaper. The modifications will involve the following four parts:

● Modifying the initWithFrame: method to set up the tracking rectangle around the on-screen ColorGraphView
instance

● Adding a mouseEntered: method that will tell the NSWindow to start sending mouse-moved events
● Adding a mouseMoved: method to process mouse-moved events
● Adding a mouseExited: method that will reset the window's event-handling status

Rather than adding this new functionality to the GraphView or ColorGraphView classes, we'll subclass
ColorGraphView to make a TrackingGraphView class. Tracking functionality is separate from graphing functionality,
and it makes sense to separate them in the code.

Let's get on with it!

18.2.1 Changes to the GraphPaper Interface

1. Back in IB, make sure that MainMenu.nib is open and is the selected window (again, we recommend that
you minimize the other nibs that are open in IB).

2. Subclass the ColorGraphView class and rename the new subclass "TrackingGraphView".

3. Add outlets called xCell and yCell to the TrackingGraphView class.

4. Change the class of the ColorGraphView instance in the GraphPaper window to TrackingGraphView in the
Class Info dialog.

5. Verify that the Graph button is still connected to the TrackingGraphView instance. Make sure it sends the
graph: action.

6. Add two NSTextField objects inside the GraphPaper window and label them "x:" and "y:", as shown in Figure
18-1. It may be necessary to resize the GraphPaper window to accommodate the two text fields.

Figure 18-1. New x: and y: text fields to identify points on a graph in GraphPaper

7. Make the two new NSTextFields uneditable but selectable in the Attributes Info dialog. Set their borders to be
solid lines, as shown in Figure 18-1.

8. Using the Size inspector, set the "springs" for both NSTextFields in the same way you did for the Graph
button: the topmost and leftmost lines should be springs, so that the text fields do not resize but instead move
with the lower-right corner.

9. Connect the TrackingGraphView's xCell outlet to the NSTextField labeled "x:" and the yCell outlet to the
one labeled "y:".

10. Create the TrackingGraphView class files and insert them into your project.

18.2.2 Changes to the TrackingGraphView Class Files

In addition to the two outlets we set up in IB, the TrackingGraphView class needs two more instance variables. The
trackingRect instance variable will remember the NSTrackingRectTag that is returned when the tracking
rectangle is created. (We don't use the variable in this class, but it is conceivable that a subclass might use it.) We will
also create a second NSMutableArray, called annotations, that we'll use to keep track of the additional annotations
(i.e., two lines that make up a big crosshair) that we will display on the TrackingGraphView.

11. Insert the lines shown here in bold into TrackingGraphView.h:

#import <Cocoa/Cocoa.h>
#import "ColorGraphView.h"

@interface TrackingGraphView : ColorGraphView
{
 IBOutlet id xCell;
 IBOutlet id yCell;
 NSTrackingRectTag trackingRect;
 NSMutableArray *annotations;
}

- (id)initWithFrame:(NSRect)frame;
- (void)mouseEntered:(NSEvent *)theEvent;
- (void)mouseExited:(NSEvent *)theEvent;
- (void)mouseMoved:(NSEvent *)theEvent;
- (void)addAnnotation:(id)anObject;

- (void)removeAnnotations;

@end

We'll set up seven methods in the TrackingGraphView class to make it draw a big crosshair over the entire view when
the mouse cursor moves over the graph (the mouse cursor itself will remain a pointer). The first method,
initWithFrame:, will establish a tracking rectangle around the TrackingGraphView.

12. Insert the following #import directive into TrackingGraphView.m:

#import "Segment.h"

13. Insert the following initWithFrame: method implementation (which overrides the one in ColorGraphView)
into TrackingGraphView.m:

- (id)initWithFrame:(NSRect)frame
{
 [super initWithFrame:frame];

 annotations = [[NSMutableArray alloc] init];

 trackingRect = [self addTrackingRect:[self visibleRect]
 owner:self
 userData:nil
 assumeInside:NO];
 return self;
}

The initWithFrame: method is the NSView designated initializer. This method calls the designated initializer in the
superclass, then adds an NSMutableArray to keep track of the annotations. Finally, a tracking rectangle is created for
the portion of the TrackingGraphView that is currently visible on the screen.

If the user resizes GraphPaper's main window, the tracking rectangle will no longer be correct. The override of the
getFormAndScaleView method shown in the next step resizes the tracking rectangle whenever the
TrackingGraphView is resized.

14. Insert the following getFormAndScaleView method implementation into TrackingGraphView.m:

- (void)getFormAndScaleView
{
 [self removeTrackingRect:trackingRect]; // Remove the old
 [super getFormAndScaleView];
 trackingRect = [self addTrackingRect:[self visibleRect]
 owner:self
 userData:nil
 assumeInside:NO];
}

The next pair of methods responds to events generated by the cursor's entering and exiting the tracking rectangle.

15. Insert the following mouseEntered: and mouseExited: method implementations into
TrackingGraphView.m:

- (void)mouseEntered:(NSEvent *)theEvent
{

 [[self window] setAcceptsMouseMovedEvents:YES];
 [[self window] makeFirstResponder:self];
}

- (void)mouseExited:(NSEvent *)theEvent
{
 [self removeAnnotations];
 [[self window] setAcceptsMouseMovedEvents:NO];
}

The mouseEntered: method makes the TrackingGraphView the NSWindow's first responder and changes the
NSWindow's event mask so that it gets all mouse-moved events. The mouseExited: method restores the original event
mask. (We'll discuss the removeAnnotations method shortly.)

The next two methods maintain the annotation list. The crosshair that TrackingGraphView draws will be added to two
display lists: the first is the normal display list maintained by the GraphView; the second is the list of annotations. This
second list allows us to remove the annotations from the primary display list without recomputing the entire graph.

16. Insert the following addAnnotation: and removeAnnotations methods into TrackingGraphView.m:

- (void)addAnnotation:(id)obj
{
 [annotations addObject:obj];
 [self addGraphElement:obj];
}

- (void)removeAnnotations
{
 NSEnumerator *en = [annotations objectEnumerator];
 id obj;

 while (obj = [en nextObject]) {
 [self setNeedsDisplayInRect:[obj bounds]];
 }

 [displayList removeObjectsInArray:annotations];
 [annotations removeAllObjects];
}

17. Insert the following mouseMoved: method into TrackingGraphView.m:

- (void)mouseMoved:(NSEvent *)theEvent
{
 NSPoint pt;
 NSEnumerator *en;
 id obj;
 pt = [self convertPoint:[theEvent locationInWindow]
 fromView:nil];

 en = [displayList objectEnumerator];
 while (obj = [en nextObject]) {

 if ([obj tag]==GRAPH_TAG &&
 pt.x >= [obj bounds].origin.x &&
 pt.x <= [obj bounds].origin.x +
 [obj bounds].size.width) {

 // Are we within 30 pixels of the line in screen coordinates?
 NSPoint ptMouse = [theEvent locationInWindow];
 NSPoint ptLine = [self convertPoint:[obj segmentCenter]
 toView:nil];

 double dist = sqrt(pow(ptMouse.x - ptLine.x,2) +
 pow(ptMouse.y - ptLine.y,2));

 if (dist<30.0) {
 // Add two segments to annotations
 NSRect vb = [self bounds];
 NSRect ob = [obj bounds];
 id seg;

 [self removeAnnotations]; // Remove the old

 // Horizontal line intersecting cursor hot spot
 seg = [[Segment alloc]
 initFrom:NSMakePoint(vb.origin.x,ob.origin.y)
 to:NSMakePoint(vb.origin.x+vb.size.width,
 ob.origin.y)];
 [seg autorelease];
 [self addAnnotation:seg];
 [seg setColor:[NSColor greenColor]];

 // Vertical line intersecting cursor hot spot
 seg = [[Segment alloc]
 initFrom:NSMakePoint(ob.origin.x,vb.origin.y)
 to:NSMakePoint(ob.origin.x,
 vb.origin.y+vb.size.height)];
 [seg autorelease];
 [self addAnnotation:seg];
 [seg setColor:[NSColor greenColor]];

 // Update positions in the x and y text fields
 [xCell setStringValue:
 [NSString stringWithFormat:@"x: %g",
 [obj segmentCenter].x]];
 [yCell setStringValue:
 [NSString stringWithFormat:@"y: %g",
 [obj segmentCenter].y]];
 [self setNeedsDisplay:YES];
 return;
 }
 }
 }

 // No segment should be highlighted
 [self removeAnnotations];
 [self display];
 [xCell setStringValue:@"x:"];
 [yCell setStringValue:@"y:"];
}

Despite the length of this mouseMoved: method, it isn't very complicated. First it converts the new mouse location
from NSWindow to NSView coordinates. Then it iterates through the display list, searching for a segment that has the

GRAPH_TAG tag and also contains the point corresponding to the mouse position. If it finds such a segment, and if the
mouse is within 30 pixels of the segment's center, it removes the old annotation (crosshair) lines and adds two new
ones - a horizontal line and a vertical one. The x: and y: text fields are then filled in, and the entire view is redisplayed.
(Ideally, you should be able to do a redisplay of only the region that has been updated, but that code didn't work for us,
possibly due to a Cocoa 10.1 bug.) If the mouse position doesn't correspond to any Segment, the annotations are
removed and the x: and y: values are erased.

18. Build and run GraphPaper. Save all files first.

19. Click the Graph button and move the cursor over the graph.

The window in Figure 18-2 shows what the x: and y: cells and highlighted Segment look like when GraphPaper runs.
Note that the arrow cursor is at the center of the big crosshair.

Figure 18-2. GraphPaper window with crosshair at cursor hot spot and with x and y values on graph

20. Quit GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 18. Tracking the Mouse

18.3 Summary

In this chapter, we continued our investigation of the NSView class by looking at the way
the class handles resize events. In the next chapter we'll learn more about Cocoa
NSScrollViews and add a zoom feature to the GraphPaper application. We'll also make
provisions for saving a graph as a PDF or TIFF file.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 18. Tracking the Mouse

18.4 Exercises

1. Explain the purpose of the assumeInside: flag in the addTrackingRect:
owner:userData:assumeInside: method.

2. Why do you think it is necessary to manually add a tracking rectangle to an
NSView in order to have that NSView track the mouse? Why is it necessary to
make the tracking view the first responder?

3. Instead of being added to a separate display list, the annotations could have been
integrated with the primary display list. Try to implement the program in this
manner. What are the advantages and disadvantages of this approach?

4. Modify the GraphPaper application so that the displayed formula changes color
when you move the mouse over it.

5. Further modify the GraphPaper application so that you can click the formula and
drag it to other locations in the GraphView window.

6. Investigate the NSFormatter class. Instead of specifying the string values "x:" and
"y:" in the mouseMoved: event, create your own NSFormatter that prepends these
labels to the floating-point value before it is displayed. Which approach is better -
using an NSFormatter or creating the formatted display in the mouseMoved:
event?

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 18. Tracking the Mouse

18.5 References

1. NSView and NSWindow class descriptions:

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/
ObjC_classic/AppKitTOC.html

1. Handling tracking-rectangle and cursor-update events in views:

http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/CursorMgmt/index.html

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/AppKitTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/AppKitTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/CursorMgmt/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/ProgrammingTopics/CursorMgmt/index.html

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 19. Zooming and Saving Graphics Files

This chapter shows how to do a few interesting things with NSViews. In the first part, we'll
show how to put a zoom pop-up menu in an NSScrollView. In the second part, we'll show
how to generate Encapsulated PostScript (EPS), PDF, or TIFF files from an NSView; how
to save a graph into an EPS, PDF, or TIFF file; and how to add controls to a Save panel
(dialog).

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.1 Adding a Zoom Button to GraphPaper

In the previous chapter, we arranged for the GraphView object to rescale its coordinate system when its
containing window was resized. Although the scaled coordinate system is appropriate for our graphing
application and is a good way to show how to catch resizing events, stretching an application's window isn't
the right way for a user to get a magnified view of the window's contents. Consider the Aqua interface
standard: a window is supposed to be just that - a window into a page of a virtual document. The document
itself shouldn't get bigger or smaller when the window is resized; rather, a bigger or smaller window should
let the user see more or less of a document.

Mac OS X applications should enable the user to see more detail using a zoom button - not the green zoom
button in a window's title bar, but a little pop-up menu button, typically located at the bottom of an
NSScrollView, that allows you to change the magnification of the NSScrollView. Microsoft Word and
Stone Design's Create applications both have such a button (see Figure 19-1).

Figure 19-1. Zoom pop-up menu button in Stone Design's Create

The window on the left in Figure 19-1 is set to a zoom factor of 100%. Pressing the zoom button reveals a
pop-up menu of different magnification settings, which in turn lets you change the size of the text that is
displayed. In the right window, we changed the setting to 200%.

It's easy to add a zoom button to any NSScrollView, but you have to know a little bit about how the
NSScrollView works first.

19.1.1 The NSScrollView Class Revisited

Each NSScrollView object has another object "inside" it, called its docView, which is the actual NSView
being displayed. In addition to the docView, each NSScrollView has the following three NSView objects to
help it perform its scrolling tasks:

● An NSScroller to control horizontal scrolling
● An NSScroller to control vertical scrolling
● An NSClipView that displays the part of the docView that is visible

We can change the magnification of the NSView displayed in the NSScrollView simply by sending a scale:
message to the NSClipView. The NSClipView will scale the NSView that it contains when it is drawn.
Zooming happens without the knowledge or cooperation of the docView.

Whenever an NSScrollView changes size (for example, when it is resized), and whenever the NSView that
it contains changes size, the NSScrollView sends the tile message to itself to alert its subviews to change
their sizes. By subclassing the NSScrollView class and overriding the tile method, we can place additional
objects (such as rulers and zoom buttons) over or next to the scrollers that the NSScrollView displays.

In this section, we will subclass the NSScrollView class to make a new class called ZoomScrollView. This
class will have outlets for its docView - the TrackingGraphView that we created in the previous chapter - as
well as for the zoom pop-up menu. We'll control the ZoomScrollView instance from the Controller object
that we created in Chapter 17.

19.1.2 Changes to MainMenu.nib

1. Open your GraphPaper project in Project Builder and the MainMenu.nib file in Interface Builder.

2. Resize the TrackingGraphView in the GraphPaper window so that it's smaller, and put it somewhere
in the window that is out of the way.

Don't worry about the size or position of the TrackingGraphView - it will automatically be resized
and placed in the proper position when GraphPaper runs.

3. Subclass the NSScrollView class and rename the new subclass "ZoomScrollView".

4. Add the subView and zoomButton outlets and the changeZoom: action method to the new
ZoomScrollView class.

5. Drag a CustomView icon from IB's Cocoa-Containers palette and drop it in the GraphPaper window.
Change its class to ZoomScrollView.

6. Resize the on-screen ZoomScrollView instance to be as large as the previous TrackingGraphView
instance. Note that the TrackingGraphView instance shows through the ZoomScrollView a bit.

7. Choose IB's Layout Send To Back menu command to put the ZoomScrollView instance
"behind" the TrackingGraphView instance, as shown in Figure 19-2.

The only reason to send the ZoomScrollView to the back is so we can easily see both NSViews at
the same time; it won't make a difference in the way GraphPaper runs.

Figure 19-2. ZoomScrollView in GraphPaper window

8. Drag a pop-up menu button from IB's Cocoa-Other palette and place it below the ZoomScrollView,
to the left of the x: field (see Figure 19-3). Do not place it on the ZoomScrollView.

9. Double-click the pop-up menu button.

When you double-click the pop-up menu button in IB, you'll see the three menu cells that the associated pop-
up menu initially contains. The on-screen pop-up menu is controlled by an instance of the NSPopUpButton
class. The NSPopUpButton class, a subclass of the NSButton class, creates an NSMenu object to handle its
menu-like functionality.

You can add a new item to an open pop-up menu in IB by dragging the Item menu cell from the Cocoa-
Menus palette and dropping it in the pop-up menu. You can't add submenus to a pop-up menu, however,
because that would violate the Aqua interface guidelines.

You can give an individual target and action to each item within the pop-up menu. Alternatively, you can
simply give an action to the button on top, which is called the cover (a type of NSPopUpButton). After a
selection is made, the NSPopUpButton automatically changes the title of the button by sending it the
setTitle: message.

10. One by one, drag three more menu items from the Cocoa-Menus palette and drop them in the pop-up
menu. Make the width of the pop-up menu smaller.

11. Name the menu cells 100%, 125%, 150%, 175%, 200%, and 300%, and give them the tags 100, 125,
150, 175, 200, and 300, respectively (use the NSMenuCell Attributes Info dialog). When you're
done, the pop-up menu should look like the one shown here.

12. Connect the NSPopUpButton's cover to the ZoomScrollView so that it sends the changeZoom:

action message (see Figure 19-3).

Figure 19-3. changeZoom: action connection from PopUpButton to ZoomScrollView in IB

13. Click the 100% item and close the pop-up menu by clicking somewhere else in the window. This
ensures that the initial condition will be with the pop-up menu at 100%.

14. Connect the ZoomScrollView's zoomButton outlet to the pop-up menu button. Note that this
connection is in the opposite direction of the previous one.

15. Connect the ZoomScrollView's subView outlet to the TrackingGraphView, as shown in Figure 19-
4.

Figure 19-4. subView outlet connection from ZoomScrollView to TrackingGraphView

16. Create the class files for ZoomScrollView and insert them into the GraphPaper project.

19.1.3 Changes to ZoomScrollView

17. Insert the lines shown here in bold into ZoomScrollView.h:

#import <Cocoa/Cocoa.h>

@interface ZoomScrollView : NSScrollView
{
 IBOutlet id subView;
 IBOutlet id zoomButton;
 double scaleFactor;
}
- (IBAction)changeZoom:(id)sender;
- (id)initWithFrame:(NSRect)theFrame;
- (void)awakeFromNib;
- (void)setScaleFactor:(float)aFloat;
- (void)tile;
@end

We'll use the scaleFactor instance variable to store the current scale factor of the ZoomScrollView. For
example, a user's zoom choice of 100% will yield a scaleFactor of 1.0, a choice of 150% will yield a
scaleFactor of 1.5, and so on. When the user changes the zoom percentage using the pop-up menu, the
NSPopUpButton object will send the changeZoom: message to the ZoomScrollView object, which in turn
will send the setScaleFactor: message to itself. ZoomScrollView's setScaleFactor: method will then
compare the new zoom factor with the current one and calculate the proper arguments to the scale: message.
If the new magnification is the same as the old, the ZoomScrollView won't do anything.

18. Insert the initWithFrame: method into ZoomScrollView.m:

- (id)initWithFrame:(NSRect)theFrame
{
 [super initWithFrame:theFrame];
 [self setBackgroundColor:[NSColor whiteColor]];
 scaleFactor = 1.0;
 return self;
}

The initWithFrame: method is the designated initializer for the NSView class. ZoomScrollView's
initWithFrame: method sends the initWithFrame: message to its superclass and then sets the background
of the NSScrollView to be white. Finally, it sets the current scale factor to be 1.0, which corresponds to the
100% menu item in the pop-up menu.

TrackingGraphView's awakeFromNib method installs the TrackingGraphView instance as the docView
inside the NSScrollView.

19. Insert the following awakeFromNib method into ZoomScrollView.m:

-(void) awakeFromNib
{
 [self setHasHorizontalScroller:YES];

 [self setHasVerticalScroller:YES];
 [self setBorderType:NSLineBorder];

 // Set up the zoom button
 [[zoomButton cell] setBordered:NO];
 [[zoomButton cell] setBezeled:YES];
 [[zoomButton cell] setFont:[NSFont labelFontOfSize:10.0]];
 [self addSubview:zoomButton];

 // The next two lines install the subView (TrackingGraphView)
 // and set its size to be the same as the NSScrollView
 [self setDocumentView:subView];
 [subView setFrame:[[self contentView] frame]];
}

This method tells the ZoomScrollView that both scrollers are required and that its border should be of type
NSLineBorder (as opposed to NSNoBorder, NSBezelBorder, or NSGrooveBorder, all of which are defined
in NSView.h). Finally, it sizes the TrackingGraphView (the subView) to be the size of the NSScrollView's
contentView, which is the NSClipView.

The next method is the one that actually changes the magnification of the NSClipView object. NSClipViews
are used by the NSScrollView class to do the actual displaying of the NSView.

20. Insert the following setScaleFactor: method into ZoomScrollView.m:

- (void)setScaleFactor:(float)aFactor
{
 NSAssert(aFactor!=0,@"Illegal scale factor. Set the tag!");

 if (scaleFactor != aFactor) {
 float delta = aFactor/scaleFactor;
 scaleFactor = aFactor;
 [[self contentView]
 scaleUnitSquareToSize:NSMakeSize(delta,delta)];
 }
}

The scaleUnitSquareToSize: method rescales the NSClipView (the contentView), with the arguments
being the delta (change) necessary to make the NSClipView have the magnification that the user wants.
This method uses the NSAssert() macro, which is similar to the ANSI C assert() macro, except
that it allows you to specify a printf-style string that is printed if the assertion is false. If aFactor==0,
the NSAssert() macro will raise the exception NSInternalInconsistencyException.

The next method is the action that is invoked when the user clicks the pop-up menu button.

21. Insert the line shown here in bold into the changeZoom: method in ZoomScrollView.m:

- (IBAction)changeZoom:(id)sender
{
 [self setScaleFactor:[[sender selectedCell] tag] / 100.0];
}

Finally, there is our tile method, an override of NSScrollView's tile method. It is invoked automatically
when the ZoomScrollView's size changes.

22. Insert the following tile method into ZoomScrollView.m:

- (void)tile
{
 NSRect scrollerRect, buttonRect;

 [super tile];

 // Place the pop-up button next to the scroller
 scrollerRect = [[self horizontalScroller] frame];
 NSDivideRect(scrollerRect, &buttonRect, &scrollerRect, 50.0,
 NSMaxXEdge);
 [[self horizontalScroller] setFrame: scrollerRect];
 [zoomButton setFrame: NSInsetRect(buttonRect, 1.0, 1.0)];
}

This tile method gets the frame of the horizontal scroller, snips off 50 pixels, and gives that space to the
zoom button. The 50-pixel limit was determined by trial and error. Note how handy the Application Kit
functions (e.g., NSDivideRect() and NSInsetRect()) are for manipulating rectangles!

19.1.4 Testing the Zoom Button

23. Build and run GraphPaper, saving all files first.

24. You should get a magnification button in the lower-right corner of the ZoomScrollView, as shown in
the window at the top of Figure 19-5. Enter a function and click the Graph button.

Figure 19-5. Zooming GraphPaper's graph from 100% (top) to 175% (bottom)

25. Press the pop-up menu button, drag to 175%, and release the mouse button. The zoom button's title
should change, as shown in the window at the bottom of Figure 19-5.

26. Resize the GraphPaper window - oops, we haven't taken care of Autosizing yet! We'll show you how
to do that in the next section.

27. Resize the GraphPaper window anyway and drag the scroll knobs. The ZoomScrollView should
stretch, making more of the graph visible, rather than changing its scale, as it did previously.

28. Quit GraphPaper.

19.1.5 Autosizing in GraphPaper

The zoom pop-up menu will make it more likely that a user will want to resize (probably enlarge) the
GraphPaper window, but we didn't take care of that possibility yet. We'll do that now.

29. Back in IB, select ZoomScrollView and type Command-3. Make ZoomScrollView's Autosizing box
look like the one on the left in Figure 19-6.

Figure 19-6. Autosizing for ZoomScrollView and NSForm instances in GraphPaper window

30. Then select the NSForm (xmin, xmax, etc.) and make its Autosizing box look like the one on the
right in Figure 19-6.

31. Build and run GraphPaper, saving the nib file. Note how quickly the building process took this time
- PB only had to stuff a new nib file in the .app directory, not much work.

32. Graph a function and resize GraphPaper. It works better but is still not perfect. See Section 19.6 at
the end of this chapter for more.

33. Quit GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.2 Saving to PDF

Although making a graph (or any other picture) is a nice start, it's important to be able to save the graph in a format that
can work with other Mac OS X applications. For example, you might want to put the graph in a word processor
document that you are making with Microsoft Word, or paste the image into a Create drawing.

One of the most common file formats in the graphics industry today is the Encapsulated PostScript (EPS) standard. EPS
contains a series of device-independent commands that can be used to draw any image on any graphics device.

EPS is a great way to move graphics between applications. EPS retains all of the information that was originally used to
draw the image: fonts, line strokes, bitmaps - it's all in there. EPS images can be scaled and displayed, and they're
beautiful and easy to work with.

But over the years, Adobe PostScript has not been a runaway success in the marketplace. Although PostScript was
extremely popular on the NeXTSTEP, Unix, and Macintosh operating systems, it never really caught on in the Windows
world. Throughout the 1990s, there were also a growing number of security concerns with PostScript, because it is more
than an imaging model - it's a programming language. Finally, as PostScript was extended, some of its device-
independence was lost.

In the 1990s, Adobe developed a new graphics imaging format called the Portable Document Format (PDF). In many
ways, PDF is a successor to PostScript. Like PostScript, it is device-independent and has provisions for embedding
fonts, compressing images, and more. But PDF also has built-in security: documents can be encrypted to control access.
Unlike PostScript, PDF is not a programming language, which means that PDF documents have less chance of
containing viruses or hostile code. And unlike PostScript, Adobe has made a strong commitment to PDF on the
Windows platform.

The Mac OS X operating system extends PDF, allowing it to be used as a general graphics file format for images and
line drawings. In this way, PDF documents can be embedded directly in other documents, similar to the way that EPS
documents are embedded in documents. But unlike PostScript, there is no "encapsulated" form of PDF - it's just regular
PDF.

As this book goes to press, PDF is still a relatively immature technology for embedding graphics images. We can make
GraphPaper produce a PDF of the GraphView graph, but we need to "trick" it because of some issues with the 10.1
AppKit. We can embed the resulting PDF image into a variety of applications, but, as we'll see, it scales properly in only
one or two of them. A PDF of a GraphPaper graph is great for printing entire pages, but it's still immature as a format for
moving images between applications.

19.2.1 Producing PDFs from NSView

Cocoa's NSView class makes it possible to generate an EPS or PDF file with a single message. Just send a
dataWithEPSInsideRect: message, and the NSView will return an NSData object that contains the EPS file. Similarly,
dataWithPDFInsideRect: will return an NSData object that contains a PDF file. The NSView object will invoke the
appropriate drawRect: method, but instead of sending the drawing code to the Window Server, it will capture the output
and send it to the stream that you designate.

Unfortunately, in Mac OS X Version 10.1, these methods do not work properly for views that are not scaled in screen
coordinates. Although these bugs may be fixed in a future release, in order to make this demonstration program work
with Version 10.1, we were forced to find a workaround. Specifically, to generate a PDF file, we had to remove the
GraphView from the ZoomScrollView, place it in an off-screen window, and ask the off-screen window to generate the
PDF file for us. Once the PDF file was created, we put the GraphView back into the ZoomScrollView. This worked, but
it's not ideal.

In the rest of this section, we'll add a Save command to GraphPaper's menu and then modify the Controller object to
capture the PDF and write it to a file.

19.2.2 Changes to MainMenu.nib

1. Back in IB, edit GraphPaper's File menu. Remove (with the Delete key) the New, Open, Open Recent, Close,
Save As, and Revert menu items, leaving only the Save, Page Setup, and Print items.

2. Rename the Save menu item "Save Graph".

3. Connect the Save Graph menu cell so that it sends the saveDocumentTo: action message to the First Responder
object in the Instances pane of the MainMenu.nib window (see Figure 19-7).

Figure 19-7. Connection from the Save Graph menu item to the First Responder

4. Save MainMenu.nib.

19.2.3 Changes to the Controller Class

We need to add three methods to the Controller class to make the Save Graph menu command work:

PDFForView:

The first method, PDFForView:, will generate an NSData object that contains the PDF representation for the
view.

saveDocumentTo:

The second method, saveDocumentTo:, will be invoked in response to a user's choosing the Save Graph menu
command. It will display a sheet that will prompt the user for the filename under which the PDF file should be
saved.

savePanelDidEnd:returnCode:contextInfo:

Finally, we will implement a savePanelDidEnd:returnCode:contextInfo: method that is called by the Save
panel to actually save the PDF in a file.

Using this last method to generate the PDF output will make it easier to adapt the saveDocumentTo: method later to
save the file as either PDF or TIFF.

5. Insert these three method declarations into Controller.h:

- (NSData *)PDFForView:(NSView *)aView;
- (IBAction)saveDocumentTo:(id)sender;
- (void)savePanelDidEnd:(NSSavePanel *)sheet
 returnCode:(int)returnCode contextInfo:(void *)contextInfo;

6. Insert the PDFForView: action method into Controller.m:

// This implementation works around an AppKit bug in Cocoa 10.1
// by placing the view in a different window and asking that
// window to create the PDF for the view.

- (NSData *)PDFForView:(NSView *)aView
{
 NSRect frame = [aView frame];
 NSView *oldSuperview = [aView superview];
 NSWindow *tempWindow;
 NSData *pdf;

 tempWindow = [[NSWindow alloc]
 initWithContentRect:frame
 styleMask:NSBorderlessWindowMask
 backing:NSBackingStoreRetained
 defer:NO];

 [[tempWindow contentView] addSubview:aView];
 pdf = [tempWindow dataWithPDFInsideRect:[tempWindow frame]];
 [oldSuperview addSubview:aView];
 [tempWindow release];
 return pdf;
}

This method creates a temporary off-screen window that has the same size as the frame of the view that is passed as an
argument (aView). The argument view, which will be TrackingGraphView, is ripped out of its current location and is
made a subview of the temporary window's content view. Then NSWindow's dataWithPDFInsideRect: method is used
to create an NSData object that contains the PDF representation of this window. Finally, the passed-in view is returned
to its original superview.

Both the NSView and NSWindow classes support the dataWithPDFInsideRect: method. Ideally, we should be able to
invoke this method in the passed-in view without putting the view in its own NSWindow. But when we tried that, we
ended up with a tiny PDF image that couldn't be displayed by any of the standard tools. This method is less elegant, but
it works.

7. Insert the following saveDocumentTo: method into Controller.m:

- (IBAction)saveDocumentTo:(id)sender
{
 NSSavePanel *pan = [NSSavePanel savePanel];

 [pan setRequiredFileType:@"pdf"];
 [pan setTitle:@"Save Graph"];

 [pan beginSheetForDirectory:nil
 file:nil
 modalForWindow:[graphView window]
 modalDelegate:self
 didEndSelector:@selector(savePanelDidEnd:returnCode:contextInfo:)
 contextInfo:nil];
}

This saveDocumentTo: method implements the Save Graph action (recall the connection from the menu item we made
earlier). The method creates an NSSavePanel, sets the required file type for this panel to be "pdf", and then starts a
modal sheet (with one of the longest method names in Cocoa!). When the user dismisses the sheet, the
savePanelDidEnd:returnCode:contextInfo: message is sent to the modalDelegate, which is self - the Controller
object.

8. Insert the following savePanelDidEnd:returnCode:contextInfo: method into Controller.m:

- (void)savePanelDidEnd:(NSSavePanel *)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 NSData *graphPDF;

 if (returnCode==0) return; // User did not click OK
 // Take no action
 graphPDF = [self PDFForView:graphView];

 if ([graphPDF writeToFile:[sheet filename] atomically:NO]==NO) {
 NSRunAlertPanel(nil,@"Cannot save file '%@': %s",nil,nil,nil,
 [sheet filename],strerror(errno));
 }
}

This method is the delegate method for the Save panel. It first checks the return code to see if the user exited the sheet by
hitting the OK or Cancel buttons. If the user did not click OK, the method returns. Otherwise, the method creates a PDF
for the graphView and writes it to a file using the writeToFile:atomically: method from the NSData class. If the
writeToFile:atomically: method fails, the appropriate error message is displayed by an NSRunAlertPanel()
function.

19.2.4 Testing the Save Graph Menu Command

9. Build and run GraphPaper. Save all files first.

10. Click the Graph button and then choose the Save Graph menu command. You should see a standard Mac OS X
document-modal sheet, as shown in Figure 19-8.

Figure 19-8. Saving a PDF file in GraphPaper

11. Enter a filename such sin-plot and click Save. A new icon like the one shown here will show up in the
Documents folder in the Finder.

12. Quit GraphPaper.

13. Now double-click the saved sin-plot.pdf file in the Finder. The graph should open in the Preview
application, as shown in Figure 19-9.

Figure 19-9. The PDF file created by GraphPaper is displayed in Preview

You can incorporate this PDF file directly into many Mac OS X applications. In theory, PDF files should automatically
scale to different display sizes. Unfortunately, some applications do not currently support PDF properly. Instead of
asking the Quartz system to redisplay the PDF image at the appropriate resolution, these programs appear to simply
create a TIFF image of the PDF and then scale the PDF as necessary.

For an example of a program that handles PDF files properly, consider Stone Design's Create. If you drag the PDF file
into a Create window, the image will appear as it did in Preview, as shown in Figure 19-10. If you increase the
resolution to 200% (or other), you'll see that the image is rendered again in higher detail, as it is in Figure 19-11.

Figure 19-10. Our sin-plot.pdf file dragged into Stone Design's Create application

Figure 19-11. Our sin-plot.pdf file scales properly in Create; the PDF is rerendered at the higher resolution

On the other hand, Microsoft Word and PowerPoint for the Mac do not properly display PDF images. Figure 19-12
shows the same PDF file dragged into a Word presentation. The image is then scaled up by a factor of 200%. Unlike
Create, Word simply scales up the image, rather than rerendering the PDF, and these ugly "jaggies" appear.

Figure 19-12. The PDF file in Word does not scale properly

This is not merely of academic interest. If you are preparing images for publication, you need to use EPS and PDF types
so that the images are properly rendered at the resolution of your output device. Figure 19-13 shows an EPS file created
from GraphPaper (by converting every "pdf" to an "eps" in the Controller class) that was then directly included in this
book. If you compare this image of the GraphView with the others in this book, you'll see that the letters sin(3*x)
have no jaggies and that the line itself looks smoother. That's because the PostScript file has been imaged at the 1200 dpi
(dots per inch) resolution of our phototypesetter. The other images of the GraphView were captured off the screen at 92
dpi (approximately) and had their pixels replicated to get to the 1200 dpi of the phototypesetter.

Figure 19-13. An EPS image created with GraphPaper and rendered directly in this book

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.3 Saving to TIFF

Under certain circumstances, you might want to generate a TIFF file instead of a PDF file. TIFF
files can be displayed on Macs running Mac OS 9 and can be transferred to numerous applications
on Windows- or Unix-based systems.

We'll use the NSImage class to convert the PDF generated in the previous section into a TIFF
representation. Then we'll ask the NSImage instance to write its image, in TIFF format, to a second
stream. This second stream will then be saved to the file that the user specifies.

1. Insert the following TIFFForView: method declaration into Controller.h:

- (NSData *)TIFFForView:(NSView *)aView;

2. Insert the following TIFFForView: method into Controller.m:

- (NSData *)TIFFForView:(NSView *)aView
{
 NSImage *image = [[NSImage alloc]
 initWithData:[self PDFForView:aView]];

 [image autorelease];
 return [image TIFFRepresentation];
}

Now that we have our TIFFForView: method to save in TIFF format, how should we invoke it?
One way would be to create a second menu item - for example, "Save Graph as TIFF". But a better
(and more common) interface technique is to provide the user with file-format choices in the Save
sheet. The way to do this is with an accessory view.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.4 Creating an Accessory NSView

An accessory view is an NSView that you provide to the NSSavePanel object. The NSSavePanel object is then
automatically incorporated into the Save sheet when it is displayed. Many applications use accessory views to let the
user choose options when saving.

IB has direct support for creating accessory views. It allows you to create standalone views - views that aren't displayed
in a window, but that are designed to be placed into windows as the need arises. In the next step, we'll create a simple
NSView instance that will be used as a container. We will then place the desired controls in this NSView and group it in
a box. Finally, we will take the id of this view and pass it to the NSSavePanel object.

We'll start by making the necessary changes to Controller.h. Then we'll create the accessory view and make
connections in IB. Finally, we'll implement the necessary method in Controller.m to allow us to specify the file
type.

3. Insert the formatBox and formatMatrix outlets and the savePanel instance variable into
Controller.h:

@interface Controller : NSObject
{
 IBOutlet id graphView;
 IBOutlet id prefController;

 IBOutlet id formatBox;
 IBOutlet id formatMatrix;
 NSSavePanel *savePanel;
}

4. Insert the following setFormat: action method declaration into Controller.h:

- (IBAction)setFormat:(id)sender;

5. Save Controller.h.

6. Activate IB and make sure that MainMenu.nib is the active window.

7. Read (parse) the updated Controller class definition into MainMenu.nib.

An easy way to do this is to drag the Controller.h icon from PB's Groups & Files pane into the
MainMenu.nib window in IB. Check the Info dialog to make sure that the newly added action method and
outlets are in the Controller class of MainMenu.nib.

Next, we'll create the accessory NSView.

8. Drag a CustomView icon from IB's Cocoa-Containers palette and drop it into the MainMenu.nib window, as
shown in Figure 19-14.

Figure 19-14. Dragging a CustomView from the Cocoa-Containers palette into the MainMenu.nib window

A new NSView will be added to the file MainMenu.nib and a small window titled "View" will appear, as
shown in Figure 19-15. This odd-looking window represents the accessory view. The icon titled "View" in the
Nib File window represents the accessory view window.

Figure 19-15. Accessory view window (left) and its icon representation (right)

9. Drag a radio-button matrix from IB's Cocoa-Views palette and drop it in the accessory view. Allow two radio-
button choices, PDF and TIFF, with PDF the default. Change the font of the radio-button labels if you like.

10. Select the radio-button matrix and choose IB's Layout Make subviews of Box menu command to
group it in a box.

11. Change the title of the box to "Format" in the Info dialog. The window should now look very similar to the one
in Figure 19-16.

Figure 19-16. The completed accessory view in IB

12. Connect the Controller's formatBox outlet to the box titled "Format".

13. Connect the Controller's formatMatrix outlet to the radio-button matrix, as shown in Figure 19-17. Refer to
the text near the bottom of the Info dialog, and verify that each outlet was connected to the correct object.

Figure 19-17. Connection (formatMatrix) from Controller to radio-button matrix

14. Connect the radio-button matrix to the Controller instance icon so that it sends the setFormat: action. Again, be
sure to connect the NSMatrix and not the containing box (check the title of the Info dialog). Note that this
connection is in the opposite direction of the one in the previous step.

19.4.1 Changes to the Controller Class

In addition to the PDFForView: and TIFFForView: methods we discussed earlier, we'll need to implement a
setFormat: action method that is invoked when the user changes the file-format type in the Save panel. Cocoa provides
only a single instance of the NSSavePanel object, so we can use the [SavePanel new] statement to get the panel's id.
We'll do that later, in the saveDocumentTo method. The SavePanel object lets us change its required file types inside its
modal loop, so when the user changes the format, the required file type is automatically changed.

15. Insert the following setFormat: method into Controller.m:

- (IBAction)setFormat:(id)sender
{
 savePanel = [NSSavePanel savePanel];
 [savePanel setRequiredFileType:
 [[[sender selectedCell] title] lowercaseString]];
}

It's a complicated statement, but by now you should be able to figure it out on your own. Notice that we directly read the
title of the selected cell in the matrix, so you can add new file types simply by adding their extensions to the control.

Now we need to modify the saveDocumentTo: method to rip the box (and the subviews that it contains) out of the
window we created earlier and put it into the Save panel as an accessory NSView. This is done with the NSSavePanel's
setAccessoryView: method. The NSSavePanel object automatically resizes the on-screen Save panel (sheet) to
accommodate the accessory NSView. We need to modify the save: method to look at the title of the selected cell and
choose the appropriate method to send output to the stream. And finally, we need to modify the savePanelDidEnd:
returnCode:contextInfo: method so that it looks at the selected file type and picks the appropriate format. All of these
modifications are presented in the following steps.

16. Replace the previous version of the savePanelDidEnd:returnCode:contextInfo: method in Controller.m
with the following one:

- (void)savePanelDidEnd:(NSSavePanel *)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 NSData *image=0;
 NSString *filetype = [sheet requiredFileType];

 if (returnCode==0) return; // User did not click OK

 if ([filetype isEqualToString:@"pdf"]) {
 image = [self PDFForView:graphView];
 }

 if ([filetype isEqualToString:@"tiff"]) {
 image = [self TIFFForView:graphView];
 }

 if (image==0) {
 NSRunAlertPanel(nil,@"Unknown file type '%@'",
 nil,nil,nil,filetype);
 return;
 }

 if ([image writeToFile:[sheet filename] atomically:NO]==NO) {
 NSRunAlertPanel(nil,@"Cannot save file '%@': %s",nil,nil,nil,
 [sheet filename],strerror(errno));
 }
}

17. Replace the previous version of the saveDocumentTo: method in Controller.m with the following one:

- (IBAction)saveDocumentTo:(id)sender
{
 NSString *type = [[[formatMatrix selectedCell] title]
 lowercaseString];

 // Get a Save panel
 savePanel = [NSSavePanel savePanel];
 [savePanel setTitle:@"Save Graph Image"];

 // Set the initial file type
 [savePanel setRequiredFileType:type];

 // Put the format box in the Save Panel
 [savePanel setAccessoryView:formatBox];

 [formatBox retain]; // Keep a copy!

 // And run
 [savePanel beginSheetForDirectory:nil
 file:nil
 modalForWindow:[graphView window]
 modalDelegate:self
 didEndSelector:@selector(savePanelDidEnd:returnCode:contextInfo:)

 contextInfo:nil];
}

Note that this method retains the formatBox instance variable. This is necessary because the savePanel automatically
releases its accessory view. If the Controller class does not retain the formatBox, it will be freed, and an error will be
generated the next time the Save panel (sheet) is displayed.

19.4.2 Testing the PDF and TIFF Save Feature

18. Build and run GraphPaper, saving all files first.

19. Click the Graph button, then choose the Save Graph menu command. You should see a Save panel with the
accessory NSView containing the radio-button matrix, as shown in Figure 19-18.

Figure 19-18. Save sheet with an accessory NSView (Format box)

20. Try saving the same graph as PDF and as TIFF. Then double-click the PDF and TIFF file icons in your Finder to
see them in Preview. You might also try to import the files into a word processor or other application.

21. Quit GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.5 Summary

You may notice that things are starting to happen really quickly - that's because we've
reached critical mass with Cocoa. Everything we've learned is starting to jell and build on
everything else that we've learned. The result is that with each step we now take, we can do
more things with less effort.

From here on, you could probably figure out everything else about Cocoa simply by
reading the documentation, because you've now mastered the basic concepts. The last two
chapters of this book will walk you through a few special Cocoa systems that you'll find
very useful: the cut-and-paste system and the Mac OS X defaults database system.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 19. Zooming and Saving Graphics Files

19.6 Exercises

1. In addition to PDF, the NSView and NSWindow classes can also generate EPS
files. Extend the GraphPaper application so that it can also save files as EPS.

2. Can you improve GraphPaper's handling of resizing? If so, how?

3. Try setting the tag of one of the pop-up cells to "0" so that the
NSInternalInconsistencyException is raised. What are exceptions and how are they
handled?

4. Write an exception handler to catch the NSInternalInconsistencyException
exception.

5. Why does the [formatBox retain]; method call appear in the saveDocumentTo:
method? What happens if it is removed? Why?

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 20. Pasteboards, Services, Modal Sessions, and
Drag-and-Drop

In the previous chapter, we showed how images produced by the GraphPaper application
can be incorporated into other programs by saving the images in PDF or TIFF files. In this
chapter, we'll show more ways that Cocoa provides for making applications work together:
the cut, copy, and paste system; the Services system; and the drag-and-drop system. To
make the Services system work, we'll also need to introduce the concept of modal sessions
- that is, event loops other than the primary event loop. You'll enjoy this chapter, because
Services and drag-and-drop are really nifty features.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.1 Cut, Copy, and Paste with the Pasteboard

The Cocoa NSPasteboard object provides a simple and direct way for users to transfer data
between applications using familiar copy, cut, and paste commands. In fact, every
application we've created already implements copy, cut, and paste inside the text fields: this
behavior is built into the NSTextView class.

Cocoa extends the traditional notions of cut, copy, and paste by providing multiple
pasteboards (clipboards), each of which can hold several different data representations
simultaneously. It also provides lazy evaluation, a system whereby information is not put
onto the pasteboard unless it is needed by a receiving application.

20.1.1 Types of Pasteboards

Cocoa provides the following five basic pasteboards:

General pasteboard (NSGeneralPboard)

Used to cut, copy, and paste data between applications. This pasteboard supports
the ordinary Cut, Copy, and Paste menu commands. (It was formerly called the
NSSelectionPboard, because it's the pasteboard used for selections.)

Ruler pasteboard (NSRulerPboard)

Holds information about margins and tab stops. This pasteboard supports Copy
Ruler and Paste Ruler commands such as those often found in word processor
applications.

Font pasteboard (NSFontPboard)

Holds information about character font size, format, and style. This pasteboard
supports Copy Font and Paste Font menu commands.

Find pasteboard (NSFindPboard)

Holds information about the current state of each application's Find panel.
Although most applications don't use the Find pasteboard, it is designed so that you
can execute a Find command in one application and then execute a Find-Next
command in another application without having to retype the search string.

Drag pasteboard (NSDragPboard)

Holds information when objects (such as color chips) are dragged from one
window (or application) to another.

You can also create your own pasteboards and use them between different applications that
you write. Of course, other people's applications are not likely to know of their existence.

20.1.2 Users and Pasteboards

Pasteboards are generally transparent to the user. That is, users don't realize that there are
five distinct pasteboards - they simply benefit from the fact that, for example, cutting text
from one application and pasting it into another doesn't change the last ruler that they
copied or pasted. Likewise, a user might search for the word "Cocoa" in one application,
not find it, switch to another application and type Command-F again, and then be pleased
to discover that the "default" search string is still "Cocoa" (because the string was put onto
the NSFindPboard by the first application and then read from there by the second one).
Users are also generally unaware that Cocoa pasteboards can hold data in multiple
representations at the same time - they simply like the results when they paste from one
application into another.

Consider this: if you create a complex image with Stone's Create program, copy it to the
pasteboard, switch to TextEdit, and then choose the Paste command, TextEdit may paste
the image into the window in PDF, TIFF, and possibly a number of other formats. If you
quit Create and then start it up again and paste the image from the pasteboard into the new
Create document, you will actually paste in a fully editable Create document, rather than
just an image. This is because Create puts several different kinds of representations of the
copied illustration onto the pasteboard, including the PDF and TIFF formats, which other
programs can use, and Create's internal file format.

There's also nothing like the pasteboard for showing bugs and implementation errors in
Cocoa applications. For example, if you copy an image from Create and paste it into
OmniGraffle, you'll discover that OmniGraffle pastes in the TIFF representation, even
though the PDF representation is also on the pasteboard. Paste in a tiny star and then
stretch it to make it big, and you'll see lots of pixelation and jaggies. Likewise, if you make
an illustration in OmniGraffle and paste it into Create, you'll see that it gets pasted in as a
TIFF, not as a PDF. It turns out that both of these are the same bug, a bug in the NSImage
implementation that is part of the Mac OS X Version 10.1 operating system. NSImage in
Version 10.1 always returns a TIFF image, even if only a PDF file is located on the
pasteboard.

Unfortunately, when you find one of these bugs, all you can do is report it to the program's
author and go on: the pasteboard system doesn't give you a way to fix bugs in other
people's programs (Andrew Stone at Stone Design fixed that bug in Create just a few hours
after it was reported, by coding around the bug in the NSImage class).

20.1.3 Providing Data to the Pasteboard

Cocoa keeps data on the pasteboard using a separate program called pbs, or the pasteboard
server. (Use the ProcessViewer utility application or enter the Unix command ps aux in a
shell window to see the running pbs server.) You can communicate with the pasteboard
server only indirectly, by sending messages to the NSPasteboard object.

There are seven commonly used NSPasteboard methods. The following two class methods
return the id of an NSPasteboard object:

+ (NSPasteboard *)generalPasteboard

Returns the id of the general pasteboard

+ (NSPasteboard *)pasteboardWithName:(NSString *)name

Returns the id of a pasteboard with a given name.

The following two instance methods put data onto a pasteboard. They are usually invoked
by the cut: or copy: methods that handle the Cut or Copy menu commands (or by your
overrides of these methods).

- (int)declareTypes:(NSArray *)newTypes owner:(id)newOwner

Tells the pasteboard which types you can provide

- (BOOL)setData:(NSData *)data forType:(NSString *)dataType

Writes the data for a particular type to the pasteboard

The following instance methods take data from the pasteboard. These are usually invoked
by a paste: method that handles the Paste menu command.

- (NSArray *)types

Returns an array listing the kinds of types available for pasting

- (NSString *)availableTypeFromArray:(NSArray *)types

Scans the array of types and returns the first type on the pasteboard that matches
one of the types in the array

- (NSData *)dataForType:(NSString *)dataType

Reads data of the specified type from the pasteboard server; returns nil if the type is
not available

Cocoa defines 15 basic pasteboard data types, as shown in Table 20-1.

Table 20-1. Cocoa pasteboard types

Type Contents

NSColorPboardType NSColor data

NSFileContentsPboardType A representation of a file's contents

NSFilenamesPboardType An NSString designating one or more filenames

NSFontPboardType Font and character information

NSHTMLPboardType
HTML (which NSTextView can read from, but not write
to)

NSPDFPboardType PDF data

NSPICTPboardType QuickDraw Picture data

NSPostScriptPboardType Encapsulated PostScript (EPS) code

NSRulerPboardType Paragraph formatting information

NSRTFPboardType Rich Text Format (RTF)

NSRTFDPboardType RTFD-formatted file contents

NSStringPboardType NSString data

NSTabularTextPboardType An NSString containing tab-separated fields of text

NSTIFFPboardType Tagged Image File Format (TIFF)

NSURLPboardType NSURL data

Data on the pasteboard is stored as an array of bytes, in a way similar to the way that you
might store it in a file, but you'll always get the contents of the pasteboard in an NSData or
an NSString object.

Programs can put data on the pasteboard in two ways:

Immediately

For example, when the user types Command-C, the program puts all of the selected
data on the pasteboard.

Lazily

When the user presses Command-C, the program simply tells the pasteboard what
kinds of data it could provide if asked. Then, when the user does a paste in another
application, the program that originally copied the data onto the pasteboard is asked
to provide the requested data.

Most Cocoa programs write one format onto the pasteboard when the user performs a cut
or copy operation and use lazy evaluation to provide the other kinds of representations that
the application knows about. The representation written first should be the most "rich"
representation of the data possible - a representation that can be used to reconstruct all the
others. If the application performing the paste operation wants data in a different format,
the first application reads the richest description from the pasteboard, converts the data to
the requested format, and writes it back.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.2 Using the Pasteboard in GraphPaper

To demonstrate how to use the pasteboard, we'll first modify the GraphPaper application so that a user can copy a
graph to the pasteboard by choosing the Edit Copy menu command.

When you create a new project in Project Builder and then open the new MainMenu.nib file in Interface Builder,
you are automatically provided with an Edit submenu like the one shown in Figure 20-1. The top seven menu items
listed (all but the Find and Spelling submenus) come preconnected to the First Responder icon (a proxy icon in IB that
represents the current First Responder object, which changes in response to user events). The methods invoked by the
First Responder object in response to these menu commands are undo:, redo:, cut:, copy:, paste:, clear:, and
selectAll:, respectively. Thus, to implement Cut and Copy menu commands for the graph, all we need to do is add cut:
and copy: methods to GraphPaper's Controller class and make Controller the NSApp (NSApplication object) delegate.
(Note that we already made Controller the NSApp delegate, in Chapter 17.) The cut: and copy: messages will
automatically be forwarded to NSApp's delegate, unless another responder in the responder chain intercepts them first.

Figure 20-1. Default Edit menu provided for a new Cocoa application in IB

GraphPaper's implementation of cut, copy, and paste will be able to provide data in two formats: PDF and TIFF.
Because PDF is the richer of these two formats, GraphPaper will put PDF on the pasteboard first and then convert it to
TIFF if requested by lazy evaluation.

Now we're ready to discuss the implementations of Controller's copyToPasteboard: and copy: methods. The
supporting copyToPasteboard: method is the one that does most of the work.

1. Insert the following four method declarations into Controller.h:

- (void)copyToPasteboard:(NSPasteboard *)pboard;
- (IBAction)copy:(id)sender;
- (void)pasteboard:(NSPasteboard *)sender
 provideDataForType:(NSString *)type;
- (IBAction)cut:(id)sender;

2. Insert the following copyToPasteboard: and copy: methods into Controller.m:

- (void)copyToPasteboard:(NSPasteboard *)pboard
{
 // Declare that we can handle PDF and TIFF
 [pboard declareTypes:[NSArray arrayWithObjects:
 NSPDFPboardType,NSTIFFPboardType,nil] owner:self];

 // Now put a PDF on the pasteboard
 [pboard setData:[self PDFForView:graphView] forType:NSPDFPboardType];
}

- (IBAction)copy:(id)sender
{
 [self copyToPasteboard: [NSPasteboard generalPasteboard]];
}

The copyToPasteboard: method begins by constructing a disposable array of two elements, NSPDFPboardType and
NSTIFFPboardType. The order of these two elements is important: it specifies the preferred order in which the types
should be used (PDF is better than TIFF). It then sends the declareTypes:owner: message to the pasteboard object
(which is passed from the copy: method) to do three things:

i. Erase any existing data on the pasteboard.

ii. Tell the pasteboard that your object can provide data of type PDF or TIFF.

iii. Specify an object (via the owner: argument) that the pasteboard can message to provide any types necessary
for lazy evaluation. Whenever there is a request for lazy data from the NSPasteboard, the pasteboard will send
the pasteboard:provideDataForType: message to the object specified by the owner: argument.

The setData:forType: message in the copyToPasteboard: method gets an NSData object with the PDF representation
and puts it on the pasteboard.

The copy: method simply calls copyToPasteboard: with a general NSPasteboard. We use this methodology so that we
can use the copyToPasteboard: method later in this chapter to copy the PDF and TIFF representations to pasteboards
other than the general pasteboard.

20.2.1 Providing Data Through Lazy Evaluation

Suppose that a user has copied a GraphPaper graph to the pasteboard and wants to paste it into another application,
such as TextEdit (which we'll refer to as the receiving application). When the user chooses the Paste command to paste
the graph, the receiving application obtains access to the selection pasteboard with the [NSPasteboard
generalPasteboard] message and then sends the types message to find out what types are available. The types
message will return the following array of two types that the GraphPaper put on the pasteboard with the declareTypes:
owner: method:

{NSPDFPboardType, NSTIFFPboardType}

Even if the receiving program knows what kind of data it wants, the program must first send the NSPasteboard the
types message to set it up for returning the requested data. Once the types message is sent, the receiving program can
ask for either type and be reasonably well assured of getting it.

If the receiving application wants the NSPDFPboardType, it will simply take the data off the pasteboard when it
invokes the dataForType: method. However, if it wants the NSTIFFPboardType, it will wait while the NSPasteboard
object sends the pasteboard:provideDataForType: message to GraphPaper's Controller object and receives a reply.
This lazy evaluation is completely transparent to the program that is receiving the pasted data.

The pasteboard:provideDataForType: method that performs the conversion from PDF to TIFF is a little tricky. We
can't just use the Controller instance method TIFFForView: (as in the previous chapter), because it is possible that the
graph that was copied to the pasteboard is no longer the one displayed in the GraphPaper window. Instead, this method
needs to take the PDF image from the pasteboard and convert it to a TIFF image. It does this conversion by using an
NSImage object.

3. Insert the following pasteboard:provideDataForType: method into Controller.m:

- (void)pasteboard:(NSPasteboard *)sender
 provideDataForType:(NSString *)type
{
 if ([type isEqualToString:NSTIFFPboardType]) {
 NSImage *image = [[NSImage alloc]
 initWithData:[sender dataForType:NSPDFPboardType]];

 [sender setData:[image TIFFRepresentation]
 forType:NSTIFFPboardType];
 [image release];
 }
}

This method both reads information off the pasteboard and puts new data on the pasteboard. The data is read off the
pasteboard with the method dataForType:. Data from the pasteboard arrives in the form of an NSData object.
Although this NSData object looks like the others, the kernel may implement the copy by mapping the data from the
address space of one application to another without actually copying the data. This is why Cocoa doesn't "choke" when
you cut and paste tens of megabytes of information at once.

If the user quits GraphPaper after some of its data has been copied to the pasteboard, its NSApplication object will
automatically force the pasteboard owner to turn all of the lazy data into real data (or at least ask the user if the copied
data will be needed by another application). This lets the user paste data into another application even if the source
(application) of the data copied to the pasteboard is no longer running.

20.2.2 Implementing the Cut Command

Cutting data is similar to copying it, except the data in the application is deleted after the copy operation is performed.
For GraphPaper, it doesn't make a lot of sense to cut out a graph from the ZoomScrollView, but implementing it still
makes sense from a user-interface point of view (it's good practice to give the user the expected feedback from a well-
known and widely used command). Therefore, if the user tries to cut a graph, GraphPaper will copy the graph onto the
pasteboard and then erase the ZoomScrollView.

4. Insert the following directive at the top of Controller.m:

#import "ZoomScrollView.h"

5. Insert the following cut: method implementation into Controller.m:

- (IBAction)cut:(id)sender
{
 [self copy:sender];
 [graphView clear];
}

20.2.3 Testing GraphPaper's Copy and Cut Commands

6. Build and run GraphPaper, saving all files first.

7. Graph an equation and click the cursor on the graph (otherwise, one of the text fields might be the first
responder).

8. Choose GraphPaper's Edit Copy menu command to copy the graph to the pasteboard. GraphPaper's
NSApplication object will send the copy: message to its delegate Controller object.

9. Open a document in Word, Create, or any other application that supports graphics (TextEdit does so in Rich
Text mode) and choose the Edit Paste menu command.

If the modifications to GraphPaper are correct and the program you're using can handle the appropriate
pasteboard types, the graph will appear in your word-processor document. (An example of pasting into Word is
shown in Figure 20-2.) If you don't have any such applications, download a trial version from the Web.

Figure 20-2. A GraphPaper graph pasted into Word

10. Now graph a different equation and click in the ZoomScrollView area.

11. Choose GraphPaper's Edit Cut menu command this time. The graph should disappear.

12. Again choose the Edit Paste menu command in the word processor, and the second graph should appear.

13. Quit GraphPaper.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.3 Services

In addition to cut, copy, and paste, Cocoa provides a nearly transparent system for
applications to work together called Services. Services work with Cocoa's concept of
"selection" to provide a system for automatically sending information from one application
to accomplish a specific function in another.

Services can send information, retrieve it, or do bidirectional processing. For example, say
you're looking at an article in a TextEdit file. To clip a paragraph from the article and place
it in a "Sticky" on the desktop, you can simply select the paragraph and choose Services

 Make Sticky, as shown in Figure 20-3.

Figure 20-3. The Services menu provides interapplication messaging without prior
agreement between applications

20.3.1 How Services Work

Unlike most menus, the Services menu is not controlled by the application in which it
appears. Instead, the content of the Services menu is controlled by the operating system.

When a user logs in, the Cocoa environment scans all of the folders listed in Table 20-2 for
applications that advertise that they can handle the Services protocol. This advertisement
consists of a list of the messages that the program can handle, what kinds of data types it
can accept, and what kinds of data types it can return.

Table 20-2. Folders scanned for applications offering services during user login

/Applications
[1] ~/Applications

[2]

/Library/Services ~/Library/Services

/System/Services /Network/Applications

/Network/Library/Services

If the services for a newly installed application do not appear in
your Services menu, try logging out of your computer and
logging back in. If that doesn't work, wait 15 minutes, shut down
your computer, start it up again, and log in again. At some point,
the services should appear.

For example, the Stickies advertisement is as follows:

NSExecutable: Stickies
NSKeyEquivalent: Y
NSMenuItem: Make Sticky
NSMessage: makeStickyFromTextServices
NSPortName: Stickies
NSSendTypes: NSStringPboardType, NSRTFPboardType

It's also possible for an application to have an NSReturnTypes field, but Stickies doesn't.

The advertisements that an application makes are stored in the Info.plist file
contained inside the application's .app wrapper (folder). When a user runs an application,
the application sends the following message to NSApp to register which types it can send
and receive:

(void)registerServicesMenuSendTypes: (NSArray *)sendTypes
 andReturnTypes: (NSArray *)returnTypes

sendTypes and returnTypes are both NSArrays of NSString objects that are similar to those
used by NSPasteboard's declareTypes:owner: method. After the program starts running,
the following method:

(id)validRequestorForSendType: (NSString *)typeSent
 returnType: (NSString *)typeReturned

is sent down the responder chain for every combination of send and return types that the
application can handle. If a responder can handle a particular combination, it should return
something other than NULL (such as self). For example, the NSTextView class
implements this method, returning self for the combinations shown in Table 20-3 and
NULL for all others.

Table 20-3. NSTextView send and return types

Send type Return type Comments

NULL NSStringPboardType Inserts new text

NULL NSRTFPboardType Inserts new Rich Text

NSStringPboardType NULL Sends text, no return

NSRTFPboardType NULL Sends Rich Text, no return

NSStringPboardType NSStringPboardType
Sends text, gets a response, and replaces
the sent text with the received text

NSStringPboardType NSStringPboardType

NSStringPboardType NSRTFPboardType

NSRTFPboardType NSStringPboardType

NSRTFPboardType NSRTFPboardType

The validRequestorForSendType:returnType: method is invoked often, so it should be
as efficient as possible. Normally, it simply looks for combinations of send and return
types and returns a value.

When the user selects an item from the Services menu in your application, your object will
be sent the writeSelectionToPasteboard:types: message declared as follows:

@interface NSObject(NSServicesRequests)
- (BOOL)writeSelectionToPasteboard: (NSPasteboard *)pboard
 types: (NSArray *)types ;
@end

This method is defined by the Application Kit as a category of the NSObject class, so it can
be sent to any object in your application. Normally, though, it will be sent only to objects
that can handle selection. When this method in an object in your application gets invoked,
it should write whatever is selected to the pasteboard pboard. The method should return
YES if the data can be provided and NO if it cannot.

If the service returns data, your object should also implement the
readSelectionFromPasteboard: method:

@interface NSObject(NSServicesRequests)
- (BOOL)readSelectionFromPasteboard: (NSPasteboard *)pboard ;
@end

If you are creating an object that does not handle selection, you do not need to implement
or even worry about these methods. (The NSTextView object is an example of an object
that handles selection.) For the remainder of this chapter, we will concentrate solely on the
other half of the process - offering services to other applications.

Carbon applications can also interoperate with the Services
system, but these require additional work on the part of the
programmer - services aren't as easy to implement under Carbon
as they are under Cocoa.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.4 Creating Your Own Service

Services advertisements, such as the one we listed earlier for the Stickies application, are stored in the application's Info.
plist file, an XML-encoded file stored inside the .app wrapper. When Mac OS X registers a new application, it opens
up the Info.plist file and looks for the application's application icon, its document icons, and its Services
advertisement (if it exists). This information is cached to improve performance.

Table 20-4 lists all of the fields allowed in the Services advertisement.

Table 20-4. Services advertisement fields

Field Meaning

Message Name of the message to be sent.

NSExecutable Name of the application's executable.

NSKeyEquivalent Key equivalent, if any, that the Services menu item should have.

NSMenuItem
Name that should appear in the Services menu. If you want to have a submenu, use the forward slash
(/). For example, to have "equation" be a submenu of "graph", you would use the string "graph/
equation".

NSMessage
Actual message that is sent to your application to cause the service to be executed. Messages are
implemented with the Cocoa distributed object system.

NSPortName
Name of the Mach port where the message should be sent. Normally, this will be the name of your
application's "Identifier," defined in the Application Settings tab in PB.

NSReturnTypes Pasteboard types that the method can return.

NSSendTypes Pasteboard types that the method can send.

NSTimeout
Numerical string that is the time, in milliseconds, that the sending application should wait before
timing out. The default is 30,000 (30 seconds).

NSUserData
Optional string that contains any value of your choice. This can be used to distinguish several
different services from each other, as an alternative to giving the services different messages.

When your application starts up, you should register an object that will receive the incoming services messages. The easiest
way to register an object is using the NSApplication setServicesProvider: message. (You can also use the
NSRegisterServicesProvider() function.) The Services system uses a private pasteboard to exchange data
between the sending and receiving applications.

To respond to a services message, you must implement a method in the Services delegate object that has the following
form:

- (void)<serviceName>: (NSPasteboard *)pasteboard
 userData: (NSString *)userData error: (NSString **)
msg

The msg argument is for returning an error condition. If your method needs to return an error, set *msg to an NSString
describing the error. The string will be displayed on the system console.

20.4.1 Modifications Required for GraphPaper to Implement Services

To show how services work, we're going to modify the GraphPaper application so that it is accessible through the Services
menus of other applications. The graph service will take a formula selected by the user, graph it using the current graph
parameters, and return the completed graph. To perform this operation, the method that implements the service will need to
read a formula from the pasteboard, draw the graph, and then put the graph back on the pasteboard.

GraphPaper requires a few minor modifications and one significant one to work as a service. The minor modifications will
take care of advertising the service, receiving the service message, making the graph, and returning the result. This is all
fairly straightforward and will be based on the same pasteboard code that we have developed up to this point.

The significant modification will allow the service provided to initiate a graph and determine when the graph is completed.
When GraphPaper is running as a service, it will not use the standard Cocoa event loop. Instead, it will run its own modal
session.

A modal session is like the standard application event loop that we have used until now, except the application object
ignores events from all windows other than the window designated in the runModalSession: message. This is how Cocoa
implements Alert alerts.

The GraphView object will signal that the graph is finished by sending the stop: message to NSApp. This method is
normally used to stop the main event loop. When you are running a modal session, it stops the modal session, which then
returns control to the location where the modal session was started. In our example, it will return control to our Controller
object and signal for the completed graph to be sent to the application that requested the service.

Don't worry if this seems complicated - it will be quite simple to implement.

20.4.2 Creating the Services Advertisement

Services advertisements are stored in the Info.plist file that is one of the application resources. The Info.plist
file is in XML format and should not be edited directly. Instead, you should use PB to edit it.

Unfortunately, with Mac OS X Version 10.1 it is necessary to (painstakingly) use PB's "Expert" XML editing mode to
manually create the XML structure necessary for the Services advertisement (PropertyListEditor is about the same hassle).
It is possible that Apple will have added an easier-to-use mode for creating Services advertisements by the time you read
this book - if so, you might want to experiment with it. Nevertheless, even if such a "Services wizard" is created, the
following steps should still work.

1. Activate PB, if it's not already running. Click the Targets vertical tab and the GraphPaper target in the Targets pane.

2. Click the Application Settings tab and the Expert button at the right.

3. Next, click the New Sibling button. A new sibling named "New item" should appear in the property list, with the
class String.

4. Change the name of the sibling to "NSServices", as shown near the bottom of the window in Figure 20-4.

Figure 20-4. New sibling renamed NSServices

5. Change the class of the sibling to Array by pressing the stepper (up-down arrow) next to String and selecting Array
from the resulting pop-up menu.

6. Click the disclosure triangle (which appears for Arrays) to the left of NSServices so that it points downward.

7. Make sure that the word "NSServices" is selected. Note that the New Sibling button is now labeled "New Child".

8. Click the New Child button, and a new row of information will appear under NSServices.

You have created the first entry in the NSServices array. Its name, "0", cannot be changed, because the name of this
child is its index in the NSServices array.

9. Change the class of this new entry to Dictionary using the stepper.

10. Now click the disclosure triangle to the left of the 0 under NSServices so that it points downward, and click the
New Child button again.

11. Rename the new item "NSMenuItem" and change its class to Dictionary.

12. Click the disclosure triangle to the left of the NSMenuItem so that it points downward, and click the New Child
button once again.

13. Give it the name "default", the class String, and the value "Graph Formula". This is the string that will appear in the
Services menu of applications that support GraphPaper's service.

14. Continue to build up the NSServices XML advertisement until it exactly resembles Figure 20-5. If you make
mistakes, use the Delete button next to the New Child button.

Figure 20-5. The completed NSServices property list

15. Change "Development" to "Deployment" in the Build Styles pane in Figure 20-5. GraphPaper has become a
deployable application now that it has pasteboard and service features, and we will actually deploy it in an /
Applications folder shortly.

This advertisement tells Mac OS X that your service should have a single menu item, Services Graph Formula, which
responds to the message graphFormula:userData:error:.

We have now completed the advertisement. However, the Services menu will not display the advertisement unless we
place an application containing the advertisement in one of the directories that is monitored by the Services system.

As of Mac OS X Version 10.1, the Services system scans for advertisements for only those applications in the directories
listed in Table 20-2. Our application is not currently in any of these locations, so its services will not appear in the Services
menu!

16. Build (but don't run) GraphPaper, saving all files first. (Click the hammer-only button in PB's toolbar.)

Before we check to see if the new service works, we'll verify that the Info.plist file in your newly built GraphPaper
application contains the XML property list for your Services advertisement. The easiest way to do that is to use the
PropertyListEditor application in the /Developer/Applications folder.

17. Back in the Finder, choose Go Go to Folder and enter the folder name ~/GraphPaper/build/
GraphPaper.app/Contents. You should see the Info.plist file bundled into the GraphPaper.app
application.

18. Double-click the Info.plist file in the Contents directory to open it in the PropertyListEditor developer
application.

19. Click the disclosure triangles within the NSServices Property List item in PropertyListEditor until you get the
window shown in Figure 20-6. We have verified that the Info.plist file was properly created by PB.

Figure 20-6. GraphPaper's Info.plist file as viewed in PropertyListEditor

20. Quit PropertyListEditor.

You can also view the Info.plist file's contents in a Terminal shell window using the Unix cat command, as follows:

cat ~/GraphPaper/build/GraphPaper.app/Contents/Info.plist

but the output is less palatable.

Next, we'll duplicate our application and put the copy in a directory that gets scanned for services.

21. In the Finder, locate and open the directory called ~/GraphPaper/build.

A copy of the GraphPaper application should be in the build directory. It will appear as the file GraphPaper,
but it's actually a directory called GraphPaper.app (recall that the Finder doesn't display the extension). This is
the copy of the application that is built every time you build your program within PB. It is also the copy of the
program that gets run within the debugger.

22. Select GraphPaper in the ~/GraphPaper/build directory in the Finder and then choose the File
Duplicate menu command.

You should see a new file icon called "GraphPaper copy" in the same directory. This copy will eventually be
moved into a folder that is scanned for services.

23. Drag the GraphPaper copy icon out of your build directory and drop it on the desktop.

24. Change the name of the icon from "GraphPaper copy" to "GraphPaper" (single-click the name, double-click Copy,
press Delete twice, and then hit Return).

25. Drag the GraphPaper desktop icon into the /Applications folder. If you don't have the permissions to do that,
create a folder called Applications in your Home folder and drag the GraphPaper alias into it.

26. Log out of your computer. This is needed to make the Graph Formula service available.

27. Log back into your computer.

When you log back into your computer, the Services system will begin scanning the monitored directories for any new
applications. When the Services system finds GraphPaper alias, it will discover the Info.plist file and read the
Services advertisement. (If this doesn't work, try restarting and even shutting down your computer. If you've configured the
Info.plist correctly, the service should show up eventually.)

On some versions of Mac OS X, the Services system will not follow the alias. If you are
unable to get the GraphPaper Services menu to appear using the steps here, try putting the
entire application (GraphPaper.app) into the /Applications directory.

20.4.3 Modification of GraphView

In the following steps, we will modify the GraphView class so that it can be effectively commanded by the Controller class
to run as a service.

28. Insert the following instance variable into GraphView.h:

BOOL runningAsService;

29. Insert the following two method declarations into GraphView.h:

- (void)setFormula:(NSString *)aString;
- (void)setRunningAsService:(BOOL)flag;

We'll use the runningAsService instance variable to tell GraphView that it should stop the modal loop when the
graph is finished being drawn.

30. Insert the three lines shown here in bold into the doStop: method in GraphView.m:

- (void)doStop:(int)which
{
 switch (which){
 case STOP_SENDER:
 sending = NO;
 break;
 case STOP_RECEIVER:
 receiving = NO;
 break;
 }

 if (sending==NO && receiving==NO) {
 [graphButton setTitle:@"Graph"];
 [graphButton setAction:@selector(graph:)];
 [graphButton setEnabled:YES];

 // For service support
 if (runningAsService) {

 [NSApp stop:nil];
 }
 }

 if (sending==NO && receiving!=NO) {
 [graphButton setEnabled:FALSE];
 [graphButton setTitle:@"Waiting..."];
 }

 if (sending!=NO && receiving==NO) {
 NSLog(@"Synchronization error");
 }
}

This addition causes the stop: message to be sent to GraphPaper's Application object when the graph is stopped or finished.

31. Insert these two accessor methods into GraphView.m:

- (void)setFormula:(NSString *)aString
{
 [formulaField setStringValue:aString];
}

- (void)setRunningAsService:(BOOL)aFlag
{
 runningAsService = aFlag;
}

That's it for the changes to GraphView.

20.4.4 Changes to Controller

Finally, we need to modify the Controller class to register as a service so that it can receive the advertisement, and to
actually handle the services request when that request arrives.

Services registration should be the last thing that your application does before it starts to accept events, because your
application may receive a services request right after it registers. Thus, we cannot register for receiving services requests in
an awakeFromNib or an initWithFrame: method (which may be followed by additional initializations). Instead, we will
register our service in the application delegate method applicationDidFinishLaunching:.

32. Insert the following two method declarations into Controller.h (not GraphView.h):

// Services
- (void)applicationDidFinishLaunching:(NSNotification *)aNot;
- (void)graphFormula:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error;

33. Insert the applicationDidFinishLaunching: delegate method into the file Controller.m:

- (void)applicationDidFinishLaunching:(NSNotification *)aNot
{
 NSLog(@"Registering as a Services Provider");
 [NSApp setServicesProvider:self];
}

This method sets the Controller object as the services provider. You must do this in order to receive services messages. The

call to NSLog() is for our benefit - it tells us that the application has properly initialized. When you are running the
application from within PB, you'll see this notice in the PB window (Run pane). Otherwise, the notice will be visible within
the Console application.

34. Insert the graphFormula:userData:error: method into Controller.m:

- (void)graphFormula:(NSPasteboard *)pboard
 userData:(NSString *)userData
 error:(NSString **)error
{
 BOOL wasHidden = [NSApp isHidden];

 [pboard types]; // Get the types
 [graphView setRunningAsService:YES];
 [graphView setFormula:[pboard stringForType:NSStringPboardType]];
 [graphView graph:nil]; // Do the graph

 // The NSEvent will cause periodic events to flow so that
 // the window will pick up events form the NSTask.
 // This may be a bug in the AppKit.
 [NSEvent startPeriodicEventsAfterDelay:0 withPeriod:0.1];
 [NSApp runModalForWindow:[graphView window]];
 [NSEvent stopPeriodicEvents];

 [graphView setRunningAsService:NO];
 [self copyToPasteboard:pboard];

 if (wasHidden) {
 [NSApp hide:self];
 }
}

Although this graphFormula:userData:error: method may seem complex, it's fairly self-explanatory. The method first
sends the types message to the pasteboard, because if you don't do that, you can't read data from the object. Next it asks the
pasteboard for its string data and puts this into the formula field, using the newly written setFormula: method. It then
sends the graph: message to the GraphView object to start the graphing process.

Recall that the graph: message actually starts up the stuffer thread that sends (x,y) pairs to the Evaluator program. The
results are read by the GraphView object because it has registered its gotData: method as an observer for the
NSFileHandleReadCompletionNotification notification. All of this happens behind the scenes, as part of the application's
main event loop. When an application is being run as a service, however, you don't want to be running the application's
main event loop, because you don't want to be taking input from the user.

The way around this apparent conundrum is to create your own event loop, which Cocoa calls a modal session. This is
what is done by the following command:

[NSApp runModalForWindow:[graphView window]];

This modal session runs until the GraphView object sends the stop: message to the NSApp object (which is done in the
doStop: method).

So what's with the call to NSEvent to create a periodic event? It turns out that when a modal session is created for a
window, the NSApplication class will wake up only for events that are destined for that window and for timer events - not
for events generated by a watched file handle. We use the NSEvent class to create a stream of periodic events. These
periodic events cause the NSApplication class to wake up, at which point it checks the NSFileHandle object to see if there
is any pending data. After the modal session, we need to terminate the stream of timed events - hence the bracketing of the
runModalForWindow: message with the two messages to NSEvent:

[NSEvent startPeriodicEventsAfterDelay:0 withPeriod:0.1];
[NSApp runModalForWindow:[graphView window]];
[NSEvent stopPeriodicEvents];

By the way, you might try running this example with the two calls to NSEvent commented out, just to see how your
application runs within a modal session. If you do this, you'll see the graph appear whenever you generate an event in the
GraphView window - for example, by clicking on the window or by choosing a menu.

When the modal session is finished, this method resets the runningAsService flag and copies the graph to the
pasteboard that was provided by the Services manager. The copyToPasteboard: method puts the PDF representation of
the graph on the pasteboard; if the requesting application wants the TIFF representation, this data will be provided through
lazy evaluation. Finally, if the GraphPaper application was originally hidden, it hides itself again. This is good manners.

20.4.5 Testing GraphPaper's Service

Well, it's time to give everything a whirl.

35. Build (but don't run) GraphPaper, saving all files first.

36. Start up TextEdit and make sure your active window supports Rich Text Format (check the TextEdit's Format
menu, third item).

37. Type the formula sin(3*x) into a TextEdit window. Select the text and choose TextEdit's Services Graph
Formula menu command, as shown in Figure 20-7.

Figure 20-7. Requesting the GraphPaper service from the TextEdit application

If GraphPaper is not already running, Mac OS X will start it up. GraphPaper will then generate the graph, and the graph
will replace the selected formula in the word processor, as shown in Figure 20-8.

Figure 20-8. Result in TextEdit (top) after receiving GraphPaper-generated graph (bottom) via a Services menu
request

If you get an "Error providing services Graph Formula" in PB's Run pane, you probably made a spelling error in either the
Info.plist file or the Controller.m file.

38. Play around with services in other applications - for example, type and select a function in a Mail compose window
and then choose Services Graph Formula to create a lovely graph that you can send to your friends.

39. Quit GraphPaper (which launches or activates when you choose its service).

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.5 Drag-and-Drop

Drag-and-drop is another way for applications to interoperate: the user simply drags information from one
application into another. Drag-and-drop requires more work on the part of the user than the Services system,
because the data must be manually dragged across application boundaries. Drag-and-drop is also less
powerful than Services because it does not offer the bidirectional interaction of services that receive
information, act on it, and return a result. Nevertheless, drag-and-drop is easier than Services for many
people to understand, largely because drag-and-drop is more familiar: it is present both in Windows and in
previous versions of the Macintosh operating system.

Although we've already done a lot in this chapter, with just a little more work we can implement drag-and-
drop functionality as well. So let's do it!

20.5.1 Being a Drag-and-Drop Source

We can make GraphPaper a drag-and-drop source by making a few small changes to the GraphView class.
Unfortunately, one aspect of this process will be a little awkward because of our decision earlier in this
chapter and the previous one to have the PDF- and TIFF-generation functionality centralized in the
Controller class. (Fixing this design flaw is left to the user as an exercise.)

1. Add the following three new method declarations to the GraphView.h interface file:

-(BOOL)acceptsFirstMouse:(NSEvent *)theEvent;
-(NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag;
-(void)mouseDragged:(NSEvent *)theEvent;

2. Insert the #import directive shown here in bold at the beginning of GraphView.m:

#import "GraphView.h"
#import "Segment.h"
#import "Label.h"
#import "Controller.h"

3. Add the acceptsFirstMouse: method to GraphView.m:

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent
{
 return YES;
}

The Macintosh operating system is a click-to-focus window environment. This means that you click on a
window to focus the keyboard on that window. But this can lead to confusing behavior. Sometimes you want
a view to react immediately to an activating click, such as when you are clicking on a button of an
application that is not active. Other times you do not want the application to react to this activating click.
Whether or not an NSView reacts to an activating click is controlled by the acceptsFirstMouse: method. If
this method returns YES, the NSWindow object will both activate and pass the event along to the NSView in

which an activating click occurs. This is the behavior that we want for dragging operations, because, for
example, the GraphPaper application will probably not be the active application when you are attempting to
drag an image out of it.

You must override two methods to implement drag-and-drop in your view. The first method,
draggingSourceOperationMaskForLocal:, tells Cocoa which drag-and-drop operations you support. The
flag argument allows you to specify whether you support these operations only for other applications, or
also within your own application.

The second method, mouseDragged:, is used to initiate a drag-and-drop operation. Your NSView subclass
is sent this message when the mouse is dragged.

4. Add the following draggingSourceOperationMaskForLocal: method to GraphView.m:

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag
{
 if (flag==YES) return NSDragOperationNone;
 return NSDragOperationCopy;
}

This method returns an NSDragOperation type that indicates what kind of operation is supported. If flag is
YES, we are being asked about drag operations within the same application. Otherwise, we are being asked
about drag operations into other applications. This method tells the drag-and-drop system that we do not
support dragging into the same application; we only support the copy operation into other applications.

Finally, we need to implement the method that does the actual dragging. Instead of hooking onto the
mouseDown: event, we'll actually hook onto the mouseDragged: event, so that merely clicking in the
GraphView will not initiate the dragging operation. (We tried the application both ways and decided that this
way was better.)

5. Add the mouseDragged: method to GraphView.m:

- (void)mouseDragged:(NSEvent *)theEvent
{
 NSImage *pdfImage = [[NSWorkspace sharedWorkspace]
 iconForFileType:@"pdf"];
 NSPasteboard *pboard;

 pboard = [NSPasteboard pasteboardWithName:NSDragPboard];
 [[NSApp delegate] copyToPasteboard:pboard];

 [self dragImage:pdfImage
 at:[self convertPoint:[theEvent locationInWindow]
 fromView:nil]
 offset:NSMakeSize(0,0)
 event:theEvent
 pasteboard:pboard
 source:self
 slideBack:YES];
}

This method first gets an image of a PDF file's icon. We don't really know what that image looks like, but
the operating system knows, so we ask it and store the results in the pdfImage variable. We then ask the
NSPasteboard class for the NSDragPboard and ask the Controller class to copy to this pasteboard. (This is
the inelegant part, by the way. Ideally, the copyToPasteboard code should have been put in the GraphView
class, rather than in the Controller class.)

Finally, we use the NSView dragImage:at:offset:event:pasteboard:source:slideBack: method to initiate
the dragging operation. This method takes the arguments listed in Table 20-5.

Table 20-5. Method arguments of dragImage:at:offset:event:pasteboard:source:slideBack:

Argument Meaning

at: Location where the dragging should start.

offset:
Offset into the image for the dragging. We make this (0,0), but it could be a point within the
image itself.

event: Event that initiated the dragging operation.

pasteboard: Pasteboard to use for the dragging operation.

source: Source of the dragging operation; it is usually self, but it doesn't have to be.

slideBack: If this argument is true, a released drag icon will appear to slide back to its source.

6. Build and run GraphPaper, saving all files first.

7. Start the TextEdit application and make sure the active window is in Rich Text mode.

8. Click the Graph button to graph a function.

9. Press your mouse on the graph and drag. A PDF icon should appear, as shown in Figure 20-9.

Figure 20-9. Dragging a PDF icon from GraphPaper

10. Drop the PDF icon into the TextEdit application. The graph should appear!

11. Quit GraphPaper.

Pretty neat, isn't it? Cocoa programming is actually lots of fun once you get the hang of it.

20.5.2 Being a Drag-and-Drop Receiver

As long as we are implementing drag-and-drop, we should implement the ability to receive drag-and-drop
events as well. Of course, just what an application such as GraphPaper should do when it receives a drag-
and-drop event might be subject to some debate. After all, what would it mean to drop something into a
GraphView?

A drag-and-drop event contains both the data being dragged in and a type associated with that data. This
information is on the pasteboard that is provided to the drag-and-drop receiver. (You should always
interrogate the incoming drag-and-drop event for its pasteboard, rather than simply getting the global
NSDragPboard.) We're not sure what it means to drag an image into the GraphPaper application. However,
there are two obvious drag-and-drop types to which the GraphPaper application could respond:

● If the user drags in a color and drops it on an item in the GraphView, we should set the item to be
that color.

● If the user drags in a piece of text and drops it on the GraphView, we should set the formula to be
that text and initiate a graph.

We'll implement both of these.

Drag-and-drop receiving applications must implement one or more of the NSDraggingDestination category
methods. These methods are implemented as categories of NSObject, rather than as informational protocols
or categories of NSResponder. Because they are implemented as categories of NSObject, you can send the
messages to any object without first checking to see whether that object responds to them. And they are
probably categories of NSObject, rather than NSResponder, so both responders and cells can be used as drag-
and-drop destinations. The methods that drag-and-drop receivers need to implement are listed in Table 20-6.

Table 20-6. NSObject (NSDraggingDestination) methods implemented by drag-and-drop receivers

Method Purpose

- (NSDragOperation)draggingEntered: (id
<NSDraggingInfo>)sender

Sent to a potential drag-and-drop receiver.
NSObject returns NSDragOperationNone,
which indicates that the object cannot receive
drag-and-drop events.

- (NSDragOperation)draggingUpdated: (id
<NSDraggingInfo>)sender

Sent periodically while a drag-and-drop object
is held over a potential receiver. The receiver
can use this to implement some sort of
animation.

- (void)draggingExited: (id <NSDraggingInfo>)sender
Sent to the potential drag-and-drop receiver if
no drag-and-drop took place.

- (BOOL)prepareForDragOperation: (id
<NSDraggingInfo>)sender

Sent to the potential receiver when the drag-
and-drop image is released. The receiver
should return YES if it can receive the drag-
and-drop object and NO if it cannot.

- (BOOL)performDragOperation: (id
<NSDraggingInfo>)sender

Sent after the drag-and-drop object has been
released. This is where the receiver should do
the actual work of receiving the drag-and-drop
object. Returns YES if the action was
successful.

- (void)concludeDragOperation: (id
<NSDraggingInfo>)sender

Sent when the drag-and-drop operation is
finished.

- (void)draggingEnded: (id <NSDraggingInfo>)sender

According to Apple's documentation, this is
sent when the drag-and-drop operation
concludes in some other destination. In fact,
though, it isn't sent, because the document also
indicates that this method hasn't been
implemented.

Table 20-7. NSDraggingInfo protocol accessor methods

Method Purpose

- (NSWindow *)draggingDestinationWindow
Returns the destination window of the drag
operation.

- (NSDragOperation)
draggingSourceOperationMask

Returns the dragging source operation mask,
which indicates what sort of dragging operation
the source supports.

- (NSPoint)draggingLocation
Returns the cursor's current location in the
dragging operation, in the destination window's
coordinate system.

- (NSPoint)draggedImageLocation Returns the location of the dragged image.

- (NSImage *)draggedImage Returns the actual image being dragged.

- (NSPasteboard *)draggingPasteboard
Returns the pasteboard that contains the data that
is being dragged in.

- (id)draggingSource Returns the source of the dragging operation.

- (int)draggingSequenceNumber
Returns the integer that uniquely identifies the
dragging session.

- (void)slideDraggedImageTo:(NSPoint)screenPoint
Slides the image to screenPoint. Use this method
to snap the image down to a particular location.
Read the documentation for details.

We're going to implement the methods to receive a drag operation by modifying the ColorGraphView class.

12. Add the following method declarations to the ColorGraphView.h interface definition:

// Dragging support
- (int)tagAtPoint:(NSPoint)pt;
- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender;
- (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender;
- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender;
@end

13. Modify the initWithFrame: method in ColorGraphView.m by inserting the lines shown here in
bold:

- initWithFrame:(NSRect)frame

{
 [super initWithFrame:frame];
 axesColor = [[NSColor darkGrayColor] retain];
 graphColor = [[NSColor blackColor] retain];
 labelColor = [[NSColor blackColor] retain];

 [self registerForDraggedTypes:
 [NSArray arrayWithObjects:NSStringPboardType,
 NSColorPboardType,nil]];
 return self;
}

The tagAtPoint: method allows the methods that implement drag receiving to determine what object is
underneath the cursor's hot spot.

14. Add the following tagAtPoint: method to the ColorGraphView.m class implementation file:

- (int)tagAtPoint:(NSPoint)pt
{
 NSEnumerator *en;
 id obj;

 en = [displayList objectEnumerator];
 while (obj = [en nextObject]) {
 if (NSPointInRect(pt,[obj bounds])) {
 return [obj tag];
 }
 }
 return 0;
}

The draggingEntered: method simply informs the dragging system that we accept dragging only for copy
operations.

15. Add the draggingEntered: method to ColorGraphView.m:

- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender
{
 return NSDragOperationCopy;
}

16. Add the draggingUpdated: method to ColorGraphView.m:

- (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];

 // If it is a string, we can take it here
 if ([pboard stringForType:NSStringPboardType]) {
 return NSDragOperationCopy;
 }

 // If is a color, we support dropping only
 // on objects in the display list
 if ([pboard dataForType:NSColorPboardType]) {

 // Get the dragging location in the view's coordinates
 NSPoint pt = [self convertPoint:[sender draggingLocation]
 fromView:nil];

 // See if there is an intersection.
 // If so, say we support a copy.
 if ([self tagAtPoint:pt]) {
 return NSDragOperationCopy;
 }
 }
 return NSDragOperationNone;
}

This method is more complicated than the draggingEntered: method. If we are receiving a text drag, we tell
the dragging system that we can accept it anywhere. But if we are receiving a color drag, we can receive it
only at points where we actually have something drawn (that is, on a piece of the graph, on the labels, or on
the axes).

The next method that will actually implement the drag operation.

17. Add the performDragOperation: to the ColorGraphView.m class implementation file:

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender
{
 NSPasteboard *pboard = [sender draggingPasteboard];
 NSString *str =0 ;
 NSColor *color=0;

 // If there is text, do the graph
 [pboard types];
 str = [pboard stringForType:NSStringPboardType];
 if (str) {
 [self setFormula:str];
 [self graph:nil];
 return YES;
 }

 // If there is color, find the tag that the user is dragging
 // onto and set the objects with that tag to be that color
 color = [NSColor colorFromPasteboard:pboard];

 if (color) {
 NSPoint pt = [self convertPoint:[sender draggingLocation]
 fromView:nil];
 int tag = [self tagAtPoint:pt];
 if (tag!=-1) {
 [self setObjectsToColor:color forTag:tag];

 return YES;
 }
 }
 return NO;
}

This method first sees if there is a string on the dragging pasteboard. If there is, the method sets the formula
to be the value and performs a graph operation. If a color is passed in, the method determines the tag over
which the color chip was dropped, then sets all of the objects with that tag to be that color.

18. Build and run GraphPaper, saving all files first. Don't graph a function yet.

19. Open up the TextEdit application. Type sin(x) (or any function that Evaluator can handle) into an
empty window and select the text by typing Command-A.

20. Now drag the selected text (i.e., the text expression sin(x)) and let it hover over the GraphPaper
graphing area, as shown in Figure 20-10.

Note that a plus sign (+) accompanies the arrow cursor, indicating that the view will accept a copy of
the dropped item (the plus sign is not shown in Figure 20-10).

Figure 20-10. Drag-and-drop from TextEdit into GraphPaper's graphing area

21. Now drop the dragged text into GraphPaper's graphing area, and voila - GraphPaper graphs the
dropped function sin(x)! See Figure 20-11.

Figure 20-11. The resulting graph of the dropped function (bottom)

Next we'll test the color drag-and-drop feature.

22. Back in the TextEdit application, choose Format Font Colors (or type Command-Shift-C)
to display the Colors panel.

23. Choose a color and drag a color chip to the actual graph (not just the graphing area) in GraphPaper,
as shown in Figure 20-12.

Figure 20-12. Dragging a color chip from the Colors dialog and dropping it on GraphPaper's
graph

Note that the arrow cursor changes to the arrow cursor with the plus sign only when the mouse is
over an object in the window that can receive a color. (Again, the plus sign doesn't appear in the
screen shot.)

24. Drop the color chip on top of the graph and see it change color.

25. Now drag-and-drop another color chip on the function name (label) and see it change color as well!
(We didn't write code for the axes to accept drag-and-drop color chips.)

26. Quit GraphPaper and rejoice!

This completes our implementation of pasteboard-related services.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.6 Summary

We did several really neat things in this chapter. We worked with three systems that Cocoa
uses for interapplication communication: the cut, copy, and paste system; the Services
system; and the drag-and-drop system. Using these features, you can greatly increase the
power and usefulness of your applications by making their features available to other
Cocoa programs. In the next chapter, the last one in the book, we'll learn about the
Preferences system.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 20. Pasteboards, Services, Modal Sessions, and Drag-and-Drop

20.7 Exercises

1. Move the PDF- and TIFF-generation functionality from the Controller to the
GraphView class. What are the advantages of having it in each class? Which is
better? Does this make the implementation of drag-and-drop easier or more
complex?

2. It's relatively easy to drag a color chip onto the graph or the function text, but it is
very difficult to drag a chip onto the axes. Why? How would you fix this problem?

3. Instead of implementing all of the drag-receiving functionality in the
ColorGraphView class, we should have implemented receiving of dragged-in color
objects in the ColorGraphView class and of dragged-in text objects in the
GraphView class. We didn't do this for the sake of brevity - it actually takes less
typing to implement drag-receiving in one place. Try to implement each kind of
functionality in the appropriate class. What are the advantages of implementing the
two kinds of drag functionality in two different classes instead of one class?

4. Implement a text drag-and-drop receiver (i.e., the NSTextField labeled "y(x)="), so
that when a formula is dragged in, it automatically gets graphed.

5. If we use the Cocoa drag-and-drop system, it is not possible for the source of a drag-
and-drop event to determine a drag-and-drop destination. This is possible, however,
using Apple's underlying Core framework system. Investigate this Core Foundation
framework and modify the GraphView application so that it displays information
about the drag-and-drop recipient.

6. When you drag out the icon representing the PDF file of the graph, the icon is not
centered underneath the mouse pointer. Fix the performDragOperation method so
it is.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Part IV: GraphPaper: A Multithreaded, Mouse-Tracking Application

Chapter 21. Preferences and Defaults

If you've used an operating environment other than Mac OS X (such as Windows or Unix),
you've probably had to worry about environment variables and configuration files. Such
nuisances are pointedly missing from most Mac OS X applications, because Mac OS X
uses a database to store all such configuration and user-preferences information. This
database is called the defaults database.

The Mac OS X defaults database stores the preferences set in the Preferences dialogs of all
applications. As a Cocoa programmer, you can use the defaults database system to store
whatever information you want.

The Mac OS X defaults database is similar to the registry in Microsoft Windows, but with
one critical difference - Mac OS X applications use this database only for storing
preferences, not for storing critical information that is necessary for the proper operation of
an application. Unlike Windows, where registry keys must be created when an application
is installed, Mac OS X applications create their defaults entries when they run - and they
automatically recreate the settings if they are accidentally or intentionally removed.
Furthermore, the settings in the defaults system never contain full application pathnames -
applications find where they are installed by examining their MainBundles (the directory
from which the application is run). Thus, you can move an application and it will still work
properly.

In this chapter, we'll modify the GraphPaper program to work with the defaults database
system. We'll use the database to store the colors used to draw the graph, axes, and labels.
In the second half of this chapter, we'll use the defaults system to store the initial values for
the graph parameters. Finally, we'll create a multi-view Info dialog to switch between these
two preferences options.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.1 Preferences and the Defaults Database System

Mac OS X stores preferences information for each application in a file located in the user's ~/
Library/Preferences/ folder. The preferences files are actually XML-encoded property
lists with the .plist extension. To prevent namespace collisions, each file is named using the
reversed fully-qualified hostname of the company that created the application (e.g., "com.
apple"), followed by the application name (e.g., "clock"). Apple calls these names domains.
Defaults domains are similar in appearance and spirit to class names in the Java programming
language. For example, the Clock application stores its preferences information in a file called
com.apple.clock.plist.

Because the ~/Library/Preferences folder is stored under the user's Home folder, each
user has her own preferences information. If you NFS-mount a user's Home directory in a
networked environment, that user will have access to her preferences information regardless of
which computer she uses for login.

21.1.1 Accessing the Defaults Database with PropertyListEditor

If you double-click ~/Library/Preferences/com.apple.clock.plist in the
Finder, the PropertyListEditor application will open and display a window similar to that in
Figure 21-1 (click the disclosure triangle next to Root, if necessary).

Figure 21-1. Property list for Apple's Clock application displayed in PropertyListEditor

You can edit a .plist file in PropertyListEditor using the steppers and New Sibling and New
Child buttons (recall that we did this earlier in PB). Try changing the InDock property of the
Clock from Yes to No (or vice versa) using the stepper at the far right of the window, and then
save the com.apple.clock.plist file. If the Clock is already running, it won't change its
Dock status immediately. However, if you quit the Clock application and then restart it, it
should change its Dock status. Changing preferences of a running application in
PropertyListEditor is dangerous, because the running application may also change the
preferences, which can lead to inconsistent results. It's like two people editing the same exact
file on a server and saving it at different times.

When we clicked the Dump button in the upper-right corner of the PropertyListEditor window,
we got the window containing the ASCII dump of the com.apple.clock.plist file, as
shown in Figure 21-2.

Figure 21-2. ASCII dump of com.apple.clock.plist file

When we listed the exact same com.apple.clock.plist file in a Terminal shell, we got
the same listing as in the PropertyListEditor dump:

% cd ~/Library/Preferences/
% cat com.apple.clock.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "file://localhost/System/Library/DTDs/
 PropertyList.dtd">
<plist version="0.9">
<dict>
 <key>24Hour</key>
 <false/>
 <key>ColonsFlash</key>
 <false/>
 <key>InDock</key>
 <true/>
 <key>NSWindow Frame Clock</key>
 <string>591 418 128 128 0 0 1024 746 </string>
 <key>ShowAnalogSeconds</key>
 <false/>

 <key>Transparancy</key>
 <real>5.800000e+00</real>
 <key>UseAnalogClock</key>
 <false/>
 <key>UseDigitalClock</key>
 <true/>
</dict>
</plist>
%

Only printable ASCII text should be stored in the database, but Apple's XML encoding system
should take care of this for you automatically.

21.1.2 Accessing the Defaults Database in a Terminal

In addition to PropertyListEditor, Mac OS X provides a Unix command-line program called
defaults for reading and modifying the contents of the defaults database.

The defaults command makes it possible to use and modify the defaults database without
having to start up a Mac OS X program and read the XML property list. That's handy if you're
writing a shell script or just trying to learn your way around the defaults system. The
defaults command can also read the contents of the defaults databases on other computers,
provided you have sufficient permissions to do so.

The primary functions of the defaults command are summarized in Table 21-1.

Table 21-1. Defaults system commands

Command Purpose

defaults [-host host]
 read domain key

Reads the defaults value of the key in the specified
domain. If key is omitted, all of the keys are read. If
domain is omitted, all of the domains are read. This
can be incredibly verbose!

defaults [-host host]
 read domain key

Reads the type of the key in the specified domain. If
key is omitted, all of the keys are read. If domain is
omitted, all of the domains are read.

defaults [-host host]
 write domain plist

Adds the property list plist to the preferences values
for the domain.

defaults [-host host]
 write domain name value

Adds the (name,value) pair to the set of preferences
for the domain.

defaults [-host host]
 rename domain old new

Renames the key old to have the name new in the
domain.

defaults [-host host]
 delete domain key

Deletes the specified key in the domain. If key is
omitted, all of the keys are removed. If domain is
omitted, all of the user's domains are removed.

defaults [-host host]
 domains

Lists all of the domains on the command line.

defaults [-host host]
 domains find word

Lists all of the domains that contain a key or value that
contains word.

We can use the defaults read command in a Terminal window to see all of the variables
and defaults for the Clock application:

% cd ~/Library/Preferences/
% defaults read com.apple.MenuBarClock
{
 AppendAMPM = 1;
 ClockDigital = 1;
 ClockEnabled = 1;
 DisplaySeconds = 1;
 FlashSeparators = 0;
 PreferencesVersion = 1;
 ShowDay = 1;
}
%

If we wanted to make the clock's AM/PM indicator disappear, we could execute this command:

% defaults write com.apple.MenuBarClock AppendAMPM 0
%

That wasn't terribly informative. What's worse, if you execute this command and then look at
your clock, you'll see that the AM/PM indicator is still there. Did the command take?

% defaults read com.apple.MenuBarClock
{
 AppendAMPM = 0;
 ClockDigital = 1;
 ClockEnabled = 1;
 DisplaySeconds = 1;
 FlashSeparators = 0;
 PreferencesVersion = 1;
 ShowDay = 1;
}

It looks as if the command worked, but its effects haven't shown up yet. Try clicking the menu
bar clock and then choose View as Icon. Click the menu bar clock once again and choose
View as Text. Now the AM/PM indicator should disappear. The behavior of preferences in
other applications may differ - it depends on how often the program checks the defaults database
stored in its .plist file.

21.1.3 Defaults Domains

The Mac OS X defaults system is designed to accommodate multiple defaults domains. Each
domain is a collection of names and values. Internally, Cocoa implements defaults domains as
NSDictionary objects that store zero or more other objects. The key to the NSDictionary is the
name of each defaults value; it is determined by an NSString object. The value can be any object
that can be stored in a property list - that is, an NSData, NSString, NSNumber, NSDate, or
NSArray object, or another NSDictionary object.

Every application that you run can have its own defaults domain. The name of this domain is the
same as the application's application identifier, which is set in Project Builder.

21.1.3.1 Persistent versus volatile defaults

Defaults domains can be persistent or volatile. A persistent domain is a domain that is stored
after an application exits and is made available again the next time that application runs. The
contents of a volatile domain are simply lost when the application finishes executing - but that
doesn't matter, because they are recreated the next time the application runs.

Persistent defaults domains are typically stored as files in the user's ~/Library/
Preferences folder, but they could in theory be stored in other locations, such as in a SQL
database or an LDAP server. In fact, the mechanics of how persistent defaults are stored and
then loaded back into memory are intentionally hidden from the programmer.

21.1.3.2 Standard defaults domains

Mac OS X provides each application with five standard defaults domains, described in Table 21-
2.

Table 21-2. Defaults domains available to every application

Domain Purpose Type

NSArgumentDomain
Stores the command-line arguments provided when the
program is run.

Volatile

Application[1]
Provides persistent storage of the user's preferences and
other values.

Persistent

NSGlobalDomain
Used by user-interface objects that require a consistent
behavior between user applications.

Persistent

Languages[2]

Used for language-specific default values. For example,
NSGregorianCalendarDate, NSDate, NSTimeZone,
NSString, and NSScanner use this defaults domain to
remember language-specific defaults (such as the names
of the days of the week).

Volatile

NSRegistrationDomain
Stores application-specific defaults of applications
before they are changed by the user.

Volatile

21.1.4 The NSUserDefaults Class

The NSUserDefaults class is the standard interface that you will use to communicate with the
defaults system. Your application will create a single instance of this class; you can get the id of
this instance using the class method +standardUserDefaults. For example:

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

The NSUserDefaults object implements a search system by which successive domains are
searched when you ask to look up an object by key. The domains are searched in the order given

in Table 21-2:

1. The NSUserDefaults object first checks the NSArgumentDomain, which is built from
the command line that was used to launch the application, if one exists. This lets you
temporarily change the value of a preference for a single run of an application.

2. If no command-line value was given, it next checks the application domain, as specified
by the application's bundle identifier.

3. If no owner/name combination is found in the defaults database, the NSUserDefaults
object next checks for a default in the NSGlobalDomain.

4. If no NSGlobalDomain default is found, the NSUserDefaults object checks the domains
for each of the user's preferred languages.

5. If no default has been found up to this point, the NSUserDefaults object returns the
value that was specified in the registration table that was registered in the
NSRegistrationDomain.

This search order of the application's compiled-in defaults will be honored unless they are
superseded by defaults specific to the user's language, defaults that have been stored, or
command-line arguments.

If we want the GraphPaper application to start up with an xstep of 5, we could launch it with
the following command line in the Terminal:

% build/GraphPaper.app/Contents/MacOS/GraphPaper -xstep 5

When your application starts up, it needs to read the user's default values and set the state of its
associated objects. Recall that in Chapter 17 we simply hardcoded values to use for defaults in
ColorGraphView.m and in Interface Builder. We'll change that in the next section.

The most obvious use of the defaults system is to remember user preferences between
successive invocations of an application, but the defaults system is actually used throughout the
Mac OS X environment. For example, Cocoa's NSRulerView class references the
NSGlobalDomain to remember if the user's preferred unit of measurement is picas, points,
inches, or centimeters. The internationalization of Cocoa is provided through the
AppleLanguages key that is stored in the NSGlobalDomain defaults domain, which allows users
to specify which languages they want to use, and in which order.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.2 Adding Defaults to GraphPaper

In this section, we'll modify the GraphPaper application to work with the defaults database. We will do this by making
changes to both the Controller and the ColorGraphView classes.

Cocoa applications use a single instance of the Foundation class NSUserDefaults for managing the defaults database.
Apple's documentation notes that the NSUserDefaults class is not thread-safe, so you should use it only from your
application's main thread.

To use the NSUserDefaults class, you must first decide what default values your application will need to store. Each of
these values should be given a name that will be its key in the defaults database. For each value, you must also decide
upon a representation - that is, how the representation will be stored. Table 21-3 shows the defaults that we will use for
GraphPaper.

Table 21-3. Defaults for the GraphPaper application

Default name #define Our default

AxesColor GP_AxesColor [NSColor red]

LabelColor GP_LabelColor [NSColor blue]

GraphColor GP_GraphColor [NSColor black]

xstep GP_xstep 0.1

xmin GP_xmin -10.0

xmax GP_xmax 10.0

ymin GP_ymin -5.0

ymax GP_ymax 5.0

formula GP_Formula cos(x)

GraphPaper window frame Not needed NSMakeRect(0,0,500,500)

Once you have decided on the default values that your application will be using, you need to write the code that will
install these into the default registration table. This table will provide the default default values for your application -
that is, the values that the application will use before any are set by the user.

Apple recommends that you register the defaults that each of your classes will use in a method you create called
+initialize. The +initialize method is a special class method that is invoked when your class is first used (recall that the
plus (+) means class method, whereas a minus (-) means instance method). The Objective-C runtime system ensures that

the initialize message[3] is sent once and only once to each class in your program. The initialize message is always sent
to a class's superclass before it is sent to the class itself.

The GraphPaper application will use the defaults system in three locations:

i. The GraphView class will use the defaults system to determine the initial values of the xmin, xmax, xstep,
ymin, ymax, and formula values, overriding the information stored in the NSForm instance in MainMenu.
nib.

ii. The ColorGraphView class will use the defaults system to determine the initial values of the AxesColor,
LabelColor, and GraphColor colors, overriding the values that were hardcoded into the ColorGraphView
class.

iii. The NSWindow class will use the defaults system to determine the initial location of the GraphPaper window.

For consistency and to prevent typographical errors, we will create a separate file called defaults.h that will contain
#define values for each of the default keys.

1. Create the defaults.h file (in PB or elsewhere) and save it in your ~/GraphPaper folder.

// defaults.h
// Define the default values used in GraphPaper

#define GP_AxesColor @"AxesColor"
#define GP_LabelColor @"LabelColor"
#define GP_GraphColor @"GraphColor"
#define GP_xstep @"xstep"
#define GP_xmin @"xmin"
#define GP_xmax @"xmax"
#define GP_ymin @"ymin"
#define GP_ymax @"ymax"
#define GP_Formula @"Formula"

2. Add defaults.h to your GraphPaper project in the group Other Sources.

21.2.1 Registering the Default Values

We will need to add two methods to each of the GraphView and ColorGraphView classes: an initialize method that will
register the appropriate defaults, and an awakeFromNib method that will set the appropriate controls based on the
values in the defaults system.

3. Insert the following declarations into GraphView.h:

+ (void)initialize;
- (void)awakeFromNib;

4. Insert the #import directive and the #define macro shown here in bold into GraphView.m:

#import "GraphView.h"
#import "Segment.h"
#import "Label.h"

#import "Controller.h"
#import "defaults.h"

#define FLOAT(x) [NSNumber numberWithFloat:x]

@implementation GraphView

5. Insert the implementation for the initialize class method into GraphView.m:

+(void)initialize
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSMutableDictionary *appDefs = [NSMutableDictionary dictionary];

 [appDefs setObject:@"0.1" forKey:GP_xstep];
 [appDefs setObject:@"-10.0" forKey:GP_xmin];
 [appDefs setObject:@"10.0" forKey:GP_xmax];
 [appDefs setObject:@"-5.0" forKey:GP_ymin];
 [appDefs setObject:@"5.0" forKey:GP_ymax];
 [appDefs setObject:@"cos(x)" forKey:GP_Formula];

 [defaults registerDefaults:appDefs];
}

For ease of typing and reading, this initialize method uses string values, rather than creating an NSNumber with the
appropriate float value.

Next we'll make the necessary changes to the ColorGraphView class.

6. Insert the method and function declarations shown here in bold into ColorGraphView.h:

+ (void) initialize;
- (void) awakeFromNib;
@end

NSData *DataForColor(NSColor *aColor);
NSColor *ColorForData(NSData *data);

7. Insert the #include directive shown here in bold into ColorGraphView.m:

#import "ColorGraphView.h"
#import "Segment.h"
#import "Label.h"
#import "defaults.h"

8. Insert the following two transformation functions and the class method declaration for initialize into
ColorGraphView.m:

NSData *DataForColor(NSColor *aColor)
{
 return [NSArchiver archivedDataWithRootObject:aColor];
}

NSColor *ColorForData(NSData *data)
{
 return [NSUnarchiver unarchiveObjectWithData:data];

}

@implementation ColorGraphView

+(void)initialize
{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 NSMutableDictionary *appDefs = [NSMutableDictionary dictionary];

 [appDefs setObject:DataForColor([NSColor redColor])
 forKey:GP_AxesColor];

 [appDefs setObject:DataForColor([NSColor blueColor])
 forKey:GP_LabelColor];

 [appDefs setObject:DataForColor([NSColor blackColor])
 forKey:GP_GraphColor];

 [defaults registerDefaults:appDefs];
}

In addition to providing the initialize method, we must equip the ColorGraphView implementation with two functions -
one for converting an NSColor object into an NSData object, and one for converting back. We need to do this because
the defaults system cannot store NSColor objects by themselves. The defaults system can store NSData objects,
however, so we can store colors in the defaults system by first converting them to NSData objects. (Indeed, because any
object can be archived in an NSData structure, it is possible to store any object in the defaults system.)

Notice that the initialize method does not need to call the initialize method in the superclass; the Objective-C runtime
system handles this for us automatically.

21.2.2 Reading Values from the Defaults Database

When GraphPaper starts up, it will read the defaults database to discover the user's preferences for graph, axes, and label
colors. (We'll add the initial graph parameters to this list in a later section.) To read the database, we use the
standardUserDefaults method.

9. Insert the following awakeFromNib instance method into GraphView.m:

- (void)awakeFromNib
{
 NSUserDefaults *defs = [NSUserDefaults standardUserDefaults];

 [xminCell setObjectValue:[defs objectForKey:GP_xmin]];
 [xmaxCell setObjectValue:[defs objectForKey:GP_xmax]];
 [xstepCell setObjectValue:[defs objectForKey:GP_xstep]];
 [yminCell setObjectValue:[defs objectForKey:GP_ymin]];
 [ymaxCell setObjectValue:[defs objectForKey:GP_ymax]];

 [formulaField setObjectValue:[defs objectForKey:GP_Formula]];
}

This method queries the defaults system for the value that corresponds to each key. The first time that this version of
GraphPaper is run, these values will correspond to the values that are registered in the initialize class method. However,
if any of the values are changed and saved in the defaults system, those values will override the values that are
registered.

10. Insert the following awakeFromNib method into the ColorGraphView.m implementation file:

- (void)awakeFromNib
{

 NSUserDefaults *defs = [NSUserDefaults standardUserDefaults];

 [super awakeFromNib];

 [self setObjectsToColor:ColorForData([defs dataForKey:GP_AxesColor])
 forTag:AXES_TAG];

 [self setObjectsToColor:ColorForData([defs dataForKey:GP_GraphColor])
 forTag:GRAPH_TAG];

 [self setObjectsToColor:ColorForData([defs dataForKey:GP_LabelColor])
 forTag:LABEL_TAG];
}

This method queries the defaults system for the NSColor object for each color, then uses the ColorGraphView
setObjectsToColor:forTag: method to set the color. We use the setObjectsToColor:forTag: method because it
performs the proper sequence of release and retain steps to ensure that we do not leak memory.

Finally, we'll take advantage of some machinery that is built into the NSWindow class that automatically remembers
where the GraphPaper window is dragged by the user and restores the window to that location when the program runs
again.

11. Insert the following class method into Controller.h:

- (void)awakeFromNib;

12. Insert the following awakeFromNib method into the Controller.m implementation file:

- (void)awakeFromNib
{
 [[graphView window] setFrameUsingName:@"Main Window"];
 [[graphView window] setFrameAutosaveName:@"Main Window"];
}

Now let's test the work we've done so far:

13. Build and run GraphPaper, saving all files first. Click the Graph button. You should see the window shown in
Figure 21-3.

Figure 21-3. GraphPaper window with defaults

Notice that the values for xmin, xmax, step, ymin, ymax, and formula are the values that were registered
in the initialize method, rather than the values that are stored in the nib.

14. Move the GraphPaper window to a different location and then quit GraphPaper.

15. Restart GraphPaper. Notice that the GraphPaper window now appears where you previously left it, rather than in
the original location (where the window was positioned in IB).

16. Now move the GraphPaper window so that it's partially off-screen.

17. Quit GraphPaper and restart it again. Note that the window is completely visible!

18. Quit GraphPaper.

Restoring a window to the location where it was positioned the last time that the application ran is a very friendly
feature, but it needs to be implemented correctly. For example, suppose your screen's resolution is set to 1600 x 1280,
and you leave an application's window in a corner of the screen and then quit the application. If you then lower your
screen's resolution to 1024 x 768 and run the application again, you might not be able to find the application's window
because it is off-screen. Fortunately, the Cocoa implementation of setFrameUsingName: (which we used in
Controller's awakeFromNib method) and related methods will never restore a window in a position where it cannot be
seen. These methods interrogate the screen to find out its current resolution and, if the stored frame of the window will
not completely appear on the screen, the frame is modified so that it will fit before the window is restored.

Finally, let's see what the property list for the GraphPaper application looks like at this point:

19. Restart GraphPaper again, choose GraphPaper Preferences, and then open the Colors panel and make
changes to the colors. Quit GraphPaper.

20. Now double-click the ~/Library/Preferences/GraphPaper.plist file in the Finder to view the
GraphPaper defaults in PropertyListEditor, as shown in Figure 21-4.

The defaults in your GraphPaper.plist file will probably differ from those in Figure 21-4. You may even
have different properties listed - it depends on what you did while GraphPaper was running.

Figure 21-4. GraphPaper.plist file in PropertyListEditor

As you can see, other parts of the application kit have been using the defaults system without our knowledge! In
particular, the NSColorPanel uses the defaults system to remember its position on the screen as well as its current mode.
Note that the main GraphPaper window's position is stored as well.

Notice also that there is no entry in the defaults system for xmin, xmax, xstep, ymin, ymax, or formula. That's
because the default values for these items are never changed in our current code. To do that, we'll need to implement the
okay: method associated with the GraphPaper Preferences panel.

Cocoa, Carbon, and the Core Framework

Cocoa's preferences system is implemented on top of the Carbon and Core Foundation framework APIs.
The interface made available through the Cocoa API allows you to access preferences only for your own
application. However, by using the Core Foundation directly, it is possible to inspect and manipulate the
defaults for other applications. To do this, you will need to use the Core framework string type,
CFStringRef, which is the class from which the NSString object is derived. (You can cast a CFStringRef
into an NSString, and vice versa.) You will then use the CFPreferencesAppSynchronize(),
CFPreferencesSetAppValue(), and CFPreferencesCopyAppValue() functions. Good
luck!

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.3 Making the Preferences Panel Work with Defaults

Now that we've arranged for the GraphView and ColorGraphView classes to set their initial values from the
defaults database, we will modify GraphPaper's Preferences panel to let the user see those values and change
them. We'll use the same Preferences panel that we created back in Chapter 17, except that we'll add two
new controls - OK and Revert buttons.

The OK button will write the current Preferences panel values into the defaults database. This button will
send the okay: action message to the Preferences panel controller object (PrefController).

The Revert button will redisplay the information in the Preferences panel by reading it out of the database.
This button will send the revert: action message to PrefController. (Recall that we added the okay: and
revert: action methods in IB and unparsed them into PrefController class files back in Chapter 17).

We'll also modify the PrefController class so that the code for setting up the initial value of each color well
is moved from the awakeFromNib method to the revert: method. This way, we won't have to duplicate the
same code in two different methods.

21.3.1 Modifying the Preferences Panel

1. Open GraphPaper's auxiliary nib file, Preferences.nib, in IB (double-click it in PB).

2. Make the Preferences panel big enough to add Revert and OK buttons, as shown in Figure 21-5.

Figure 21-5. The Preferences panel with Revert and OK buttons

3. Add the Revert and OK buttons (using the Cocoa-Views palette), as shown in Figure 21-5. Make
them line up nicely with the box using the blue guidelines.

4. Make the OK button the default button. To do this, select the button, type Command-1 to display the

NSPanel Attributes Info dialog, click the pop-up menu labeled "<no key>", and drag to Return (to
make the Return key a key equivalent for the OK button).

The OK button should turn blue (or whatever "Appearance" color you've selected in System
Preferences).

5. Connect the Revert button to the PrefController instance icon so that it sends the revert: message.

6. Connect the OK button to the PrefController instance icon so that it sends the okay: message, as
shown in Figure 21-6.

Figure 21-6. Connecting the OK button to PrefController in IB

7. Save Preferences.nib.

21.3.2 Changes to the PrefController Class

Now we need to modify the PrefController class so that it implements the revert: and okay: methods.

8. Back in PB, add the following #import directive to the beginning of the PrefController.m
class file:

#import "defaults.h"

9. Move the three lines that set color wells from the awakeFromNib method in the
PrefController.m file to the revert: method. The revert: method should look like this:

- (IBAction)revert:(id)sender
{
 [self setUpWell:axesColorWell];
 [self setUpWell:labelColorWell];
 [self setUpWell:graphColorWell];
}

The revert: method calls the setUpWell: method for each of the color wells. Recall that the setUpWell:
method asks the ColorGraphView class for these values. Because we previously modified the
ColorGraphView to get these values from the defaults database, no further modification is required in the
PrefController class.

We will also arrange for the Preferences window to show up where it was last left by the user in
awakeFromNib.

10. Add the lines shown here in bold to awakeFromNib:

- (void)awakeFromNib
{
 [[NSColorPanel sharedColorPanel] setContinuous:YES];

 [window setFrameUsingName:@"Preferences"];
 [window setFrameAutosaveName:@"Preferences"];
 [self revert:nil];
}

11. Insert the lines shown here in bold into the okay: method in PrefController.m (the method
stub should already be there, as it was for revert:):

- (IBAction)okay:(id)sender
{

 NSUserDefaults *defs = [NSUserDefaults standardUserDefaults];

 [defs setObject:DataForColor([axesColorWell color])
 forKey:GP_AxesColor];

 [defs setObject:DataForColor([labelColorWell color])
 forKey:GP_LabelColor];

 [defs setObject:DataForColor([graphColorWell color])
 forKey:GP_GraphColor];

 [window orderOut:nil];
}

The okay: method gets the current value for each of the color wells, converts each value to an NSData
object using our DataForColor() function, and stores these objects in the defaults database. Finally, it
orders out (i.e., dismisses) the Preferences window, because most users expect the Preferences window to
disappear when they press the OK button.

21.3.3 Testing the Updated Preferences Panel

12. Graph a function and choose the GraphPaper Preferences menu command to bring up the
Preferences panel.

13. Change some colors and click the Revert button; notice how the original colors return to the
Preferences panel.

14. Change some colors and click OK.

15. Quit GraphPaper.

16. Run GraphPaper again and graph a function. Note that the values that you set in the Preferences
panel during the last run of the GraphPaper are still in effect. Quit GraphPaper.

17. Double-click the ~/Library/Preferences/GraphPaper.plist file in the Finder to view
the GraphPaper defaults in PropertyListEditor, as shown in Figure 21-7. The long hexadecimal
strings are the NSData representations of the NSColor objects.

Figure 21-7. GraphPaper.plist file in PropertyListEditor after changing colors in the Preferences panel

There is one last problem that needs to be resolved to complete this phase. Earlier in this chapter, we said
that the default values should be stored in a file that has the fully-qualified domain name of the application's
publisher. But GraphPaper's default values are being stored in a file called GraphPaper.plist, not
something like com.nitroba.GraphPaper.plist. This needs to be fixed!

It turns out that the NSUserDefaults class decides which name to use based on the application identifier that
is set in PB. In previous chapters, we set this application identifier to the name of the application. Now it's
time to change this.

18. Activate PB.

19. Click on the Targets vertical tab and select the GraphPaper target.

20. Click the Application Settings tab.

21. Change the name in the Identifier field from "GraphPaper" to "com.nitroba.GraphPaper" (the .
plist extension will be added automatically).

22. Build and run GraphPaper, saving all files first.

23. Make a change to the Preferences panel, then quit the program.

24. Verify that the preferences are now saved in the file com.nitroba.GraphPaper.plist in
your ~/Library/Preferences folder, and not in GraphPaper.plist.

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.4 Setting Up a Multi-View Panel

In this section, we're going to change the Preferences panel into a multi-view panel, so that we can use it to
change either the initial colors or the initial graph parameters (e.g., xmin, ymax). Figure 21-8 shows the
pop-up menu and two NSViews that will show up in our new Preferences panel. The particular view that
shows up depends on which tab (Colors or Initial) the user selects. In the final section of this chapter (and
the book!), we'll modify GraphView to read its initial graph conditions out of the defaults database.

Figure 21-8. The two views of the multi-view Preferences dialog

21.4.1 Tab Views

It's quite easy to set up a tab view with Cocoa: just drag out the tab view and drop your GUI elements into
place. Before we do this, however, we need to set up instance variables to hold the additional controls.

1. Insert the five outlet instance variables shown here in bold into PrefController.h:

#import <Cocoa/Cocoa.h>

@interface PrefController : NSObject
{

 // Colors tab
 IBOutlet id axesColorWell;
 IBOutlet id graphColorWell;
 IBOutlet id labelColorWell;

 // Initial tab
 IBOutlet id xminCell;
 IBOutlet id xmaxCell;
 IBOutlet id xstepCell;
 IBOutlet id yminCell;
 IBOutlet id ymaxCell;

 IBOutlet id window;
}
...
@end

2. Save PrefController.h.

3. Open Preferences.nib in IB.

4. Drag the PrefController.h icon from PB and drop it in the Preferences.nib window in
IB.

The last step brought the five new outlet variables into IB. In the next few steps, we'll put a tab view on the
Preferences panel and set up the appropriate controls.

5. Select a color well in the Preferences panel in IB and then Shift-select the other two color wells and
the labels. Then type Command-X to cut the six selected items (we'll paste them back later).

6. Select the Colors box and hit the Delete key (we won't need it anymore).

7. Drag a Tab/View icon from IB's Cocoa-Containers palette and drop it in the Preferences panel.

8. Size the Tab/View to fit in the Preferences panel (see Figure 21-8).

9. Double-click inside the Tab/View to tell IB that you want to work within the container.

10. Type Command-V to paste in the three color wells and their labels.

11. Reconnect the PrefController's axesColorWell, graphColorWell, and labelColorWell
outlets to their respective color wells (Control-drag from PrefController to each well).

12. Double-click on the tab labeled "Tab" in the Tab/View and change the label to read "Colors".

13. Click the tab labeled "View" in the Tab/View. Note that your controls disappear! (Don't worry -
they're still there - you can make them reappear by clicking the Colors tab.)

14. Change the word "View" to "Initial".

15. Drag out a Field1/Field2 NSForm from the Cocoa-Views palette and drop it in the Initial tab (pane).

16. Expand the NSForm to five cells. You may want (or need) to shrink the font size or change the
intercell spacing. (You can change the intercell spacing by holding down the Command key while
resizing the matrix.)

17. Connect the appropriate PrefController outlets (xmaxCell, xminCell, xstepCell,
yminCell, and ymaxCell) to the appropriate cells in the form (Control-drag from PrefController
to the fields).

18. Save the Preferences.nib file.

21.4.2 Loading and Saving the Default Values

Finally, we need to modify the revert: and okay: methods for the PrefController class so that the xmin,
xmax, xstep, ymin, and ymax values are read from the defaults database when the Preferences window
is displayed and saved back into the defaults database when the OK button is pressed. (Recall that we have
already modified the GraphView class so that it initializes these values from the defaults database.)

19. Insert the lines shown here in bold into the revert: method in the PrefController.m class file:

- (IBAction)revert:(id)sender
{

 NSUserDefaults *defs = [NSUserDefaults standardUserDefaults];

 [self setUpWell:axesColorWell];
 [self setUpWell:labelColorWell];
 [self setUpWell:graphColorWell];

 [xminCell setObjectValue:[defs objectForKey:GP_xmin]];
 [xmaxCell setObjectValue:[defs objectForKey:GP_xmax]];
 [xstepCell setObjectValue:[defs objectForKey:GP_xstep]];
 [yminCell setObjectValue:[defs objectForKey:GP_ymin]];
 [ymaxCell setObjectValue:[defs objectForKey:GP_ymax]];
}

20. Insert the five lines shown here in bold into the okay: method in PrefController.m:

- (IBAction)okay:(id)sender
{
 NSUserDefaults *defs = [NSUserDefaults standardUserDefaults];

 [defs setObject:DataForColor([axesColorWell color])
 forKey:GP_AxesColor];

 [defs setObject:DataForColor([labelColorWell color])
 forKey:GP_LabelColor];

 [defs setObject:DataForColor([graphColorWell color])
 forKey:GP_GraphColor];

 [defs setObject:[xminCell objectValue] forKey:GP_xmin];
 [defs setObject:[xmaxCell objectValue] forKey:GP_xmax];
 [defs setObject:[xstepCell objectValue] forKey:GP_xstep];
 [defs setObject:[yminCell objectValue] forKey:GP_ymin];
 [defs setObject:[ymaxCell objectValue] forKey:GP_ymax];

 [window orderOut:nil];
}

21. Build and run GraphPaper, saving all files first.

22. Choose GraphPaper Preferences.

23. Select the Initial tab in the Preferences panel, and you should see the initial defaults, as shown in
Figure 21-9.

Figure 21-9. GraphPaper's Preferences panel with initial defaults

24. Enter values for all of the initial parameters and click OK (or hit Return). The OK and Revert
buttons work as before.

25. Quit GraphPaper.

26. Now run GraphPaper again, and the initial values should show up in both the GraphPaper window
and the Preferences panel.

27. Quit GraphPaper.

28. Double-click the ~/Library/Preferences/com.nitroba.GraphPaper.plist file in
the Finder to view the GraphPaper defaults in PropertyListEditor, as shown in Figure 21-10.

Figure 21-10. com.nitroba.GraphPaper.plist file after setting initial values in the Preferences panel

29. Quit GraphPaper.

Congratulate yourself for making it through this book! We salute you! We thank you! We honor you!

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.5 Summary

Well, we've finally come to the end of the book. In this chapter, we learned some more
about how to write a professional quality Cocoa application program and, in particular,
how to use the Mac OS X defaults database.

Although there's lots more to learn about Cocoa, from here on you should be able to get
most of what you need from the online documentation (or from our next book!). If you've
been with us until now, you've learned the basics of Cocoa's three main classes
(NSApplication, NSView, and NSWindow), how they interact, and how to modify their
functions as necessary to get done just about anything that you want to get done.

Cocoa establishes a framework into which all of the Application Kit objects neatly fit, like
carved wooden pieces into a Chinese puzzle. The longer you program Cocoa, the more
you'll learn about using the pieces that Apple provides; you'll also learn more and more
about adding your own pieces.

Now go out and write a killer application!

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Chapter 21. Preferences and Defaults

21.6 Exercises

1. We never saved the Formula cell. Try adding it to the Preferences panel and saving
it.

2. Instead of saving them in the Preferences panel, arrange for the GraphPaper
application to automatically remember the values for xmin, xmax, ymin, ymax,
and xstep as they are entered on the GraphPaper main window. What are the
advantages and disadvantages of this approach over using the Preferences panel?

3. Further modify the Preferences implementation so that the color preference is set
when a new color is dragged in. Does this make the system easier or harder to use?

4. Should there even be a Preferences panel? Implement the application without it.
Discuss the advantages and disadvantages of having a Preferences panel.

Book: Building Cocoa Applications: A Step-by-Step Guide

Appendix A. Cocoa Resources

Although you now know enough to write a Cocoa application, the truth of the matter is that
we have only scratched the surface of what there is to learn. There are dozens of classes
that we haven't explained. There are frameworks that we've only hinted at. There's a lot of
functionality that we didn't include because, frankly, it still has bugs. And finally, there's
the fact that Cocoa is still a work-in-progress, with Apple sure to make more changes.

So, now that we've reached the end of this little course in learning Cocoa, what we hope to
leave you with is instructions for finding out more. Fortunately, there are many, many
Cocoa references online. We've tried to assemble a list of some here. You'll find still more
on the Web. The references included here were accurate as of the time this book went to
press, but some may have changed by the time you read the book.

For additional information about the material presented in this book, we recommend that
you first check this book's own web site, located at:

http://www.oreilly.com/catalog/buildcocoa/

At this site, you'll find the book's sample code available for download, errata, and other
book-related information, such as plans for future editions.

http://www.oreilly.com/catalog/buildcocoa/

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Appendix A. Cocoa Resources

A.1 Apple Resources

Over the years Apple has made a significant effort to make the Macintosh a friendly
platform for developers and users alike. With Mac OS X, Apple has redoubled its efforts.
A staggering amount of technical information for the Mac OS X platform is available
online. Much of this information you can access without registering or paying a penny.

A.1.1 Online Documentation

The most important reference available for developing Cocoa applications is Apple's own
documentation. This documentation describes every Cocoa class, method, and function is
great detail. Apple has also created higher-level "concepts" documentation that discusses
many higher-level issues in Cocoa programming, from memory allocation and drawing to
advanced interprocess communications issues.

When you install the developer tools from the Mac OS X Developer Tools CD-ROM, you
are given an option to install the developer documentation on your computer. The
documentation installs as both a series of HTML files and a PDF file of the entire manual.
The HTML files can be viewed from within Project Builder itself by choosing Cocoa Help
from the Project Builder Help menu. If you wish, you can print the PDF files to create your
own bound copy of the documentation.

As an alternative to reading the Apple documentation on your computer, we recommend
reading it from Apple's web site. The documentation on the web site is the most up-to-date,
and it frequently has more detailed explanations and discussions than you will find on the
Developer CD-ROM. An added advantage of the online documentation is that it is easily
searchable.

You will find Apple's online documentation at:

http://developer.apple.com/techpubs/

Apple also makes much of its developer documentation available in hardcopy form. On the
technical publications web site, you will find information about how to order hardcopy
documentation.

In writing this book, we found the following Apple technical publications to be extremely
useful:

Mac OS X Developer Documentation

http://developer.apple.com/techpubs/

http://developer.apple.com/techpubs/macosx/macosx.html

This is the primary entry point for documentation about developing software for the
Mac OS X environment. This documentation area is divided into the following
categories: Essentials; Carbon; Cocoa; Developer Tools; Core Technologies;
Additional Technologies; Networking; Release Notes; Legacy; and Darwin.

Cocoa Developer Documentation

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

This is the primary entry point for documentation about developing software using
Cocoa. This documentation area is divided into the following categories: Site
Information; Getting Started; Java Framework Reference; Objective-C Framework
Reference; Legacy; Program Design; Data Management; File, Resource, and
Process Management; Events and Other Input; Drawing and Imaging; Text
Handling; User Interface Elements; Interapplication Communication; and
Multimedia.

Introduction to the Aqua Human Interface Guidelines

http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/index.
html

This book describes how to design your application for the Aqua user interface.
The information in this book will allow you to make your application operate in a
manner that is consistent with other Aqua applications, which ultimately makes it
easier for people to use your application without additional training. If you are
going to be developing applications that will be used by a large group of people, we
recommend that you read this book.

Foundation Objective-C API Reference

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/
ObjC_classic/FoundationTOC.html

Application Kit Objective-C API Reference

http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/
ObjC_classic/AppKitTOC.html

These pages list all of the Objective-C classes and informal protocols that make up
the Cocoa Foundation and Application Kit, respectively. In writing this book, we

http://developer.apple.com/techpubs/macosx/macosx.html
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/index.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/ObjC_classic/FoundationTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/AppKitTOC.html
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/ApplicationKit/ObjC_classic/AppKitTOC.html

found that the fastest way to look up the documentation for a particular class was to
go to these pages and then select the class name. If you are a serious Cocoa
programmer, we strongly recommend that you bookmark these pages.

A.1.2 Apple Developer Connection

The Apple Developer Connection (ADC) is Apple's primary tool for communicating with
Macintosh developers. Registered developers receive regular bulletins by email, access to
Apple's developer resources, and more.

Basic membership for the ADC is free. This free membership allows you to download the
latest development tools, file bug reports, gain access to certain early software releases, and
receive weekly technical updates via email.

If you'd rather have this type of information mailed to you, you can pay to become an ADC
Mailing customer. You will then receive the latest in development tools, system software,
development kits, and reference materials via a CD-ROM series delivered to you monthly
via postal mail.

A low-cost ADC Student Program is aimed at university students around the world. ADC
Student developers receive special introductory tools, access to a student community of
Mac programmers, and other educational opportunities, including the chance to win
scholarships to the Worldwide Developers Conference.

For more money, you can sign up for the Select and Premier levels of service. These
programs offer a multitude of high-end products and services, including discounts on
Apple hardware and third-party products and services and access to Apple's technical
support engineers.

You will find information about the Apple Developer Connection at:

http://developer.apple.com

Information about signing up for these programs can be found at:

http://developer.apple.com/membership/

A.1.3 Sample Code

We believe that the best way to learn to program a new environment is through a
combination of writing your own source code and reading well-written code that others
have developed. That's why we have presented a combination of source code and exercises
in this volume.

http://developer.apple.com/
http://developer.apple.com/membership/

If you're looking for more programming examples, you need look no further than your own
hard drive: the Cocoa Developer Tools come with source code for a large number of
sample programs. You'll find these programs in the /Developer/Examples/AppKit
and /Developer/Examples/Carbon directories. Of particular interest are the
following:

/Developer/Examples/AppKit/CircleView

CircleView is a simple application that demonstrates NSView subclassing and text
display.

/Developer/Examples/AppKit/CompositeLab

There are 13 distinct compositing operations. This application allows you to use
each of those operations with a source and destination of your choice. This is a
great lab for showing you how the compositing system works and how to
incorporate image-manipulation functionality into your application.

/Developer/Examples/AppKit/DragNDropOutlineView

This demonstration shows you how to construct an outline view and enable drag-
and-drop. The application also allows you to experiment with the many different
options to consider when you enable drag-and-drop in an outline view.

/Developer/Examples/AppKit/Rulers

A ruler is a view that tracks along with the content view of a scroll view. You are
probably familiar with rulers from the word-processor application, but here you can
actually create your own rulers and use them for a variety of purposes.

/Developer/Examples/AppKit/SimpleImageFilter

The Cocoa image filter system allows you to give existing Cocoa applications the
ability to read nonstandard graphics file formats. Although we did not discuss
image filters in this book, they are similar in practice to services. This code shows
you how to implement them.

/Developer/Examples/AppKit/SimpleToolbar

Many Cocoa applications have toolbars. This source code shows you how to add
toolbars to your own applications. Try Control-clicking on the toolbar to customize
it.

/Developer/Examples/AppKit/Sketch

Sketch is a full-blown drawing application that implements a ton of functionality. If
you want to respond to events, draw text, print, implement services, or do
practically anything with graphics, you should check out Sketch.

/Developer/Examples/AppKit/TextEdit

This is the source code for the TextEdit application. It's a good place for
information-building applications that use the multiple-document architecture.

A.1.4 Worldwide Developers Conference

The Apple Worldwide Developers Conference (WWDC) is an annual meeting of
Macintosh developers, hosted by Apple Computer. The conference features tutorials,
classes, introductions to the latest Apple technologies, and a show floor with the latest and
greatest tools for Macintosh developers. You should be there! Check out:

http://developer.apple.com/wwdc/

A.1.5 Registering Creator Codes

The future of creator codes is presently in doubt. Nevertheless, when you start developing a
commercial application of your own, you should register a unique creator code with Apple
at this web site:

http://developer.apple.com/dev/cftype/

A.1.6 Bug Reporting

If you find a bug in Cocoa or any other part of the Macintosh environment, you are
encouraged to report it at:

http://bugreporter.apple.com

Apple also welcomes any feedback that you might have regarding Cocoa. You can send
your comments to cocoa@apple.com.

http://developer.apple.com/wwdc/
http://developer.apple.com/dev/cftype/
http://bugreporter.apple.com/
mailto:cocoa@apple.com

Book: Building Cocoa Applications: A Step-by-Step Guide
Section: Appendix A. Cocoa Resources

A.2 Third-Party Resources

This section summarizes the best of the many third-party resources that you'll find helpful
in learning more about Cocoa.

A.2.1 Mailing Lists

Online mailing lists are a great way to stay up-to-date on developer issues:

cocoa-dev

Apple's cocoa-dev is a mailing list focused exclusively on Cocoa development
issues. The mailing list is a forum for both technical and nontechnical questions.
Although most of the participants are outside of Apple, many people on Apple's
Cocoa development team read the mailing list and answer questions. For
information on how to subscribe to this mailing list, go to:

http://lists.apple.com/mailman/listinfo/cocoa-dev

MacDev-1

This list is cosponsored by MacTech Magazine, Developer Depot (a retailer of
programming tools), and Apple. MacDev-1 is a source of news, information,
updates, and special offers for the Mac programmer community. The goals of the
MacDev-1 list are to make developers more aware of available programming
resources and to provide vendors of Mac development tools with an efficient
channel through which to spread the word about product releases. This list is
moderated by the MacTech Magazine staff. For information on how to participate
in MacDev-1, go to:

http://www.mactech.com/macdev-1/

A.2.2 Web Sites

You'll find the following web sites helpful:

Mac DevCenter

Affiliated with O'Reilly & Associates, Inc., the O'Reilly Network is home to the
Mac DevCenter, a hub site that offers news, FAQs, original articles, and other

http://lists.apple.com/mailman/listinfo/cocoa-dev
http://www.mactech.com/macdev-1/

technical information for Mac OS X developers. Various online and offline
resources aimed especially at Cocoa developers are available at:

http://www.oreillynet.com/mac/

MacTech

The web site run by MacTech Magazine (described under Section A.2.3) contains
extensive resources for Mac developers, including downloadable source code that
Cocoa developers should find helpful and a web version of "MacTech Online," a
monthly column from the magazine that provides online technologies and
resources. It also contains links to web pages, shareware archives, newsgroups,
mailing lists, and castanet channels aimed at Macintosh programmers. Go to the
home page at:

http://www.mactech.com

SourceForge

SourceForge.net is the world's largest open source development web site, with the
largest repository of open source code and applications available on the Internet.
SourceForge.net provides free services to open source developers, including project
hosting, version control, bug and issue tracking, project management, backups and
archives, and communication and collaboration resources.

There are many open source projects based on the Cocoa framework. You can
explore them by searching for the word "Cocoa" in the search field on
SourceForge's home page:

http://www.sourceforge.net

A.2.3 Printed Resources

We recommend that you take a look at the following books and magazines:

Cocoa Programming for Mac OS X, by Aaron Hillegass (Addison Wesley)

Naturally, if you are buying just one book on Cocoa programming, you should buy
the book you are holding in your hands. But if you are looking for another point of
view, you might want to check out Aaron Hillegass's book. Aaron was a developer
trainer at NeXT and has worked on developing some fairly sophisticated Cocoa
applications. Even better, just as we cover many topics not mentioned in Aaron's
book, Aaron covers many topics not mentioned in this book, making the two books

http://www.oreillynet.com/mac/
http://www.mactech.com/
http://www.sourceforge.net/

quite complementary.

Learning Cocoa, by James Duncan Davidson and Apple Computer (O'Reilly)

The first edition of this book was written by Apple Computer; a second edition was
in the works as this book went to press. It provides an introduction to the Cocoa
environment, taking you through the process of creating single-window
applications and building up to more complex, multiple-window, document-based
applications. While Learning Cocoa assumes some knowledge of C programming,
the book teaches you the basic concepts of object-oriented programming with
Objective-C while introducing you to Cocoa.

Learning Carbon, by Apple Computer (O'Reilly)

Even if you plan to build your applications using Cocoa, you can still benefit from
time to time by dipping into the Macintosh Core framework and Carbon layers.
This book provides you with all of the information you need to access these system
resources.

Learning Unix for Mac OS X, by Dave Taylor and Jerry Peek (O'Reilly)

This concise introduction summarizes what users need to know to get started with
Unix functions on Mac OS X. The book explains how to use the Terminal
application, become familiar with the command-line interface, explore many Unix
applications, and - most importantly - take advantage of the power of Unix on the
Mac platform.

Mac OS X for Unix Developers, by Brian Jepson and Ernest E. Rothman (O'Reilly)

Although Mac OS X is based on Unix, it is different from most standard Unix
implementations. This book will help advanced Unix users acclimate themselves to
this familiar, yet foreign, Unix environment; it provides information useful to Unix
programmers, such as the details of linking, compiling, and packaging their
applications.

Mac OS X Pocket Reference, by Chuck Toporek (O'Reilly)

This handy book introduces Mac, Windows, and Unix users to the fundamental
concepts of Mac OS X. It starts with a "Mac OS X Survival Guide," which shows
Mac users what has changed from Mac OS 9 and helps Windows and Unix
converts get acclimated to their new OS. The book concludes with a "Task and
Setting" index, which answers questions users might have when configuring their
systems.

Mac OS X: The Missing Manual, by David Pogue (Pogue Press/O'Reilly)

This book illuminates both the big-ticket features and the fine points of Mac OS X
Version 10.1: its Unix-like folder structure, powerful networking and Internet
features, and even the command-line interface of its Unix underbelly. It also covers
each of the control panels and bonus programs that come with Mac OS X,
including iTunes, Mail, Sherlock, and Apache, the built-in web server.

MacTech Magazine

MacTech is a monthly print journal that presents programming articles and news
about Macintosh technology and development. For subscription information, go to:

http://www.mactech.com

The MacTech web site was described earlier in this appendix, under Section A.2.2.

http://www.mactech.com/

Book: Building Cocoa Applications: A Step-by-Step Guide

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Building Cocoa Applications is a Mastiff (also known as an
English or Old English Mastiff). The Mastiff is a large-breed working dog with a long
history-Mastiffs have been used as guard and fighting dogs in England for more than 2,000
years, and dogs of this type are found in European and Asian records dating back to 3000
BC. Shakespeare referred to Mastiffs as "the dogs of war," and Henry VIII is known to
have given King Charles V of Spain several hundred Mastiffs to use as fighting dogs on the
battlefield. Trained fighting mastiffs were also used by the ancient Celts, by Kubla Khan,
and by Hannibal when he crossed the Alps. Even as recently as the two World Wars,
Mastiffs were used to pull munitions carts on the fronts.

Mastiff owners are often first attracted to the breed by its large size-Mastiffs are the
heaviest dog breed, weighing in at an average of 180-220 pounds. Despite their history as
fighting dogs, modern breeders have bred the Mastiff for gentleness and have created an
excellent companion, large enough to deter intruders yet gentle enough to be dependable
around children. Mastiffs are loyal, patient, affectionate, and protective, and they tend to
bond strongly to their owners and become depressed during long periods of separation.

Rachel Wheeler was the production editor and copyeditor for Building Cocoa Applications.
Leanne Soylemez was the proofreader. Linley Dolby provided quality control, and Mary
Brady, David Chu, Phil Dangler, Julie Flanagan, and Sue Willing provided production
assistance. John Bickelhaupt wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman.
The cover image is from the Dover Treasury of Animal Illustrations, edited by Carol
Belanger Grafton. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted into FrameMaker 5.5.6
with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Rachel
Wheeler.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and
cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
Liggett.

Book: Building Cocoa Applications: A Step-by-Step Guide

